纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 74-82.doi: 10.13475/j.fzxb.20220506901

• 纺织工程 • 上一篇    下一篇

机织物的热传递与强热条件下热防护性能

杨孟想1, 刘让同1,2,3(), 李亮1,2,3, 刘淑萍1,2,3, 李淑静1,2,3   

  1. 1.中原工学院, 河南 郑州 451191
    2.先进纺织装备技术省部共建协同创新中心, 河南 郑州 451191
    3.郑州市阻燃隔热耐火功能性服装与材料重点实验室, 河南 郑州 451191
  • 收稿日期:2022-05-23 修回日期:2023-02-24 出版日期:2023-11-15 发布日期:2023-12-25
  • 通讯作者: 刘让同(1966—),男,教授,博士。主要研究方向为纺织服装新材料。E-mail: ranton@126.com
  • 作者简介:杨孟想(1998—),女,硕士生。主要研究方向为功能服装新材料。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309100)

Heat transfer and thermal protection properties under strong thermal conditions of woven fabrics

YANG Mengxiang1, LIU Rangtong1,2,3(), LI Liang1,2,3, LIU Shuping1,2,3, LI Shujing1,2,3   

  1. 1. Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. Advanced Textile Equipment Technology Provincial and Ministerial Collaborative Innovation Center, Zhengzhou, Henan 451191, China
    3. Zhengzhou Key Laboratory of Flame-Retardant, Heat Insulating and Fire-Resistant Functional Clothing and Materials, Zhengzhou, Henan 451191, China
  • Received:2022-05-23 Revised:2023-02-24 Published:2023-11-15 Online:2023-12-25

摘要:

在高低温、热辐射和烈火场等强热物理场,要求服装具有隔热功能。为探究组织结构、热源强度对机织结构材料热防护性能的影响,采用有限元模拟方法,研究热源强度为0.8 kW/m2条件下,6种组织芳纶、涤纶机织结构材料的瞬态热传递过程特征,得到材料的温度云图和表面温度时变图,观察温度时变图,从隔热时间和隔热温度2个维度提出强热条件下评价织物热防护性能的5大指标。结果表明:热流沿纱线浮长传递,形成与浮长相关的上、下表面温度和温差;热流达到下表面的滞后时间越长,下表面的温升速度越慢,形成的温差越大,下表面形成的稳定温度越低,材料的防护效果越好,6种组织的隔热防护性能由低到高排序为:平纹、2上1下斜纹、3上1下斜纹、4上1下斜纹、5上1下斜纹、6上1下斜纹;在常规热源条件下,单层织物能够有效阻止热流滞后约 1.5 s,强热条件下,需增加防护厚度或叠加其它材料以提高隔热能力;辐射热防护性能测试表明,实验结果与模拟结果存在很好的一致性。

关键词: 机织物, 各向异性, 浮长, 热传递性能, 热防护, 数值模拟

Abstract:

Objective Thermal protective clothing has attracted much attention because of its unique thermal insulation function and wide application prospects. However, it is difficult to describe the transient heat transfer process in the fabric by physical tests, and the preparation process of thermal protective fabric needs to rely on a large number of thermal protective performance tests. Therefore, the transient heat transfer process of different woven fabric is simulated by finite element method.

Method The transient heat transfer characteristics of six woven fabrics (plain weave, 2  1-6  1 twill) of aramid and polyester were studied by finite element simulation, and the temperature nephogram and surface temperature time varying diagram of the fabrics were obtained. From the two dimensions of heat insulation time and heat insulation temperature, five indicators for evaluating the thermal protection performance of fabrics under strong thermal conditions were proposed, namely, the lag time of temperature rise on the lower surface, temperature rise speed of lower surface, stable temperature of upper and lower surfaces, maximum temperature difference and stable temperature difference. The effects of yarn float and heat source intensity on the thermal protection performance of fabrics were studied.

Results The heat flow is transmitted along the yarn float, which causes the temperature of the yarn body on the surface of the fabric to rise, and the temperature of the yarn in the weaving area to rise faster, forming the upper and lower surface temperatures and temperature differences related to the yarn float (Fig. 3). The lag time, maximum temperature difference and stable temperature difference of the initial temperature rise of the lower surface of the six aramid and polyester fabrics from low to high all exist: plain,2  1,3  1,4  1,5  1,6  1 twill, showing a positive correlation with the fabric float (Fig. 5, Fig. 6), while the lower surface temperature rise speed and stable temperature show a negative correlation with the fabric float (Fig. 4, Fig. 6). Under the condition of conventional heat source intensity of 0.8 kW/m2, single-layer aramid and polyester fabrics can effectively prevent the heat flow lag of about 1.5 and 1.4 s, respectively (Fig. 6). When the heat transfer balance is reached, the upper surface temperature of aramid and polyester fibers is stabilized at about 318.33 and 317.13 K(45.18 and 43.98 ℃), respectively, the lower surface temperature is stabilized at about 306.53 and 307.63 K(33.38 and 34.48 ℃), respectively, and the upper and lower surface temperature difference is stabilized at about 11.8 and 9.5 K respectively. With the increase of heat source intensity, the lag time decreases gradually (Tab. 5). Under the heat source intensity of 4.0 kW/m2, the lower surface temperature of aramid and polyester fibers are stabilized at 345.26 and 350.47 K (about 72.11 and 77.32 ℃)(Tab. 6), respectively, which are 37 ℃ higher than the constant physiological temperature of human body.

Conclusion The yarn float will directly affect the heat transfer of the fabric. When other conditions are the same, the thermal insulation and protection performance of the six fabrics from low to high is: plain,2  1,3  1,4  1,5  1,6  1 twill. Under strong heat intensity, the single-layer fabric is not enough to delay the heat flow transmission, and the thermal insulation protection ability is limited. It is necessary to increase the protective thickness or add other materials to improve the thermal insulation ability. Through the RPP thermal protection performance test, the test results are in good agreement with the simulation results, and the research results provide guidance for the design of thermal insulation structures.

Key words: woven fabric, anisotropy, yarn float, heat transfer property, thermal protection, numerical simulation

中图分类号: 

  • TS101.8

图1

纱线中热传递各向异性的曲线坐标模型"

图2

织物传热的三维模型与温度时变关系"

表1

织物模型编号"

织物组织 织物模型编号
芳纶 涤纶
平纹 VA1 VP1
2上1下斜纹 VA2 VP2
3上1下斜纹 VA3 VP3
4上1下斜纹 VA4 VP4
5上1下斜纹 VA5 VP5
6上1下斜纹 VA6 VP6

表2

材料的物性参数"

材料 导热系数/
(W·(m·K)-1)
密度/
(kg·m-3)
比热容/
(J·(kg·K)-1)
芳纶 {0.04, 0.002, 0.002} 1 450 1 400
涤纶 {0.084, 0.016 8, 0.016 8} 1 380 1 340
静止空气 0.026 1.29 1 010

图3

VA3沿厚度方向不同时刻温度分布云图"

图4

芳纶和涤纶织物上下表面温度时变曲线"

图5

织物上下表面温差时变曲线"

图6

织物下表面温升滞后时间和温升速度"

表3

织物上下表面的稳定温度"

织物编号 稳定温度/K
上表面 下表面
VA1 318.23 306.64
VA2 318.29 306.58
VA3 318.33 306.53
VA4 318.36 306.50
VA5 318.38 306.48
VA6 318.39 306.47
VP1 317.02 307.73
VP2 317.08 307.69
VP3 317.12 307.65
VP4 317.17 307.61
VP5 317.20 307.58
VP6 317.22 307.56

表4

织物上下表面的最大温差和稳定温差"

织物编号 最大温差/K 稳定温差/K
VA1 11.70 11.59
VA2 11.83 11.71
VA3 11.92 11.80
VA4 11.97 11.86
VA5 12.01 11.90
VA6 12.04 11.92
VP1 9.41 9.29
VP2 9.51 9.39
VP3 9.59 9.47
VP4 9.67 9.56
VP5 9.73 9.62
VP6 9.77 9.66

表5

不同热源强度时织物下表面温升滞后时间"

热源强度/
(kW·m-2)
滞后时间/s
VA3 VP3
0.8 1.438 1.358
1.6 1.097 1.014
2.4 0.942 0.854
3.2 0.865 0.770
4.0 0.789 0.688

表6

不同热源强度时织物上下表面稳定温度"

热源强度/
(kW·m-2)
上表面稳定温度/K 下表面稳定温度/K
VA3 VP3 VA3 VP3
0.8 318.33 317.12 306.53 307.65
1.6 340.90 338.88 318.11 320.44
2.4 361.32 358.53 328.26 331.62
3.2 379.91 376.49 337.22 341.55
4.0 397.01 393.07 345.26 350.47

图7

芳纶织物上下表面的模拟和实验温度时变曲线"

图8

芳纶织物上下表面的模拟和实验温差时变曲线"

表7

不同热源强度时芳纶与涤纶织物下表面的模拟和实验温升滞后时间"

热源强度/
(kW·m-2)
芳纶织物的时间/s 涤纶织物的时间/s
模拟值 实验值 模拟值 实验值
0.8 1.438 1.443 1.358 1.362
1.6 1.097 1.104 1.014 1.020
2.4 0.942 0.948 0.854 0.859
3.2 0.865 0.873 0.770 0.777
4.0 0.789 0.796 0.688 0.694

表8

不同热源强度时芳纶与涤纶织物下表面的模拟和实验稳定温度"

热源强度/
(kW·m-2)
芳纶织物的温度/K 涤纶织物的温度/K
模拟值 实验值 模拟值 实验值
0.8 306.53 305.77 307.65 306.88
1.6 318.11 316.80 320.44 319.08
2.4 328.26 326.55 331.62 329.84
3.2 337.22 335.23 341.55 339.48
4.0 345.26 343.04 350.47 348.18

表9

不同热源强度时芳纶织物上下表面的模拟和实验最大温差和稳定温差"

热源强度/
(kW·m-2)
最大温差/K 稳定温差/K
模拟值 实验值 模拟值 实验值
0.8 11.92 11.76 11.80 11.65
1.6 23.30 22.99 22.79 22.54
2.4 34.23 33.79 33.06 32.75
3.2 44.81 44.26 42.69 42.34
4.0 55.06 54.41 51.75 51.39

表10

不同热源强度时涤纶织物上下表面的模拟和实验最大温差和稳定温差"

热源强度/
(kW·m-2)
最大温差/K 稳定温差/K
模拟值 实验值 模拟值 模拟值
0.8 9.59 9.48 9.47 9.38
1.6 18.87 18.60 18.44 18.27
2.4 27.88 27.58 26.91 26.70
3.2 36.68 36.30 34.94 34.71
4.0 45.28 44.82 42.60 42.35
[1] CAI G M, WANG H, LUO Z, et al. Study on thermal insulation properties of aluminized aramid fabrics[J]. Fibres & Textiles in Eastern Europe, 2015, 23(4):52-56.
[2] QI Z K, HUANG D M, HE S, et al. Thermal protective performance of aerogel embedded firefighter' s protective clothing[J]. Journal of Engineered Fibers & Fabrics, 2013, 8(2): 134-139.
[3] FU M, WENG W G, YUAN H Y, et al. Thermal insulations of multilayer clothing systems measured by a bench scale test in low level heat exposures[J]. International Journal of Clothing Science & Technology, 2014, 26(5):412-423.
[4] 郑振荣, 智伟, 韩晨晨, 等. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(6):38-44.
ZHENG Zhenrong, ZHI Wei, HAN Chenchen, et al. Numerical simulation of heat transfer of carbon fiber fabric under heat flow impact[J]. Journal of Textile Research, 2019, 40(6):38-44.
[5] 张鹤誉, 郑振荣, 赵晓明, 等. 玻璃纤维交织织物的热传递数值模拟[J]. 纺织学报, 2015, 36(3):28-31.
ZHANG Heyu, ZHENG Zhenrong, ZHAO Xiaoming, et al. Numerical simulation of heat transfer of glass fiber interleaved fabric[J]. Journal of Textile Research, 2015, 36(3):28-31.
[6] GHAZY A, BERGSTROM D J. Numerical simulation of heat transfer in firefighters' protective clothing with multiple air gaps during flash fire exposure[J]. Numerical Heat Transfer Part A: Application, 2012, 61(8):569-593.
doi: 10.1080/10407782.2012.666932
[7] VENKATARAMAN M, MISHRA R, MILITKY J, et al. Modelling and simulation of heat transfer by convection in aerogel treated nonwovens[J]. Journal of the Textile Institute Proceedings & Abstracts, 2016, 108(8):1442-1453.
[8] ZHENG Zhenrong, ZHANG Nannan, ZHAO Xiaoming, et al. Simulation of heat transfer through woven fabrics based on the fabric geometry model[J]. Thermal Science, 2018, 22(6):2815-2825.
doi: 10.2298/TSCI160507128Z
[9] SIDDIQUI M O R, SUN D. Automated model generation of knitted fabric for thermal conductivity prediction using finite element analysis and its applications in com-posites[J]. Journal of Industrial Textiles, 2016, 45(5):1038-1061.
doi: 10.1177/1528083714551440
[10] 王照亮, 唐大伟, 郑兴华, 等. 3ω法测量单根碳纤维导热系数和热容[J]. 工程热物理学报, 2007(3):490-492.
WANG Zhaoliang, TANG Dawei, ZHENG Xinghua, et al. Three ω measurement of thermal conductivity and heat capacity of single carbon fiber by method[J]. Journal of Engineering Thermophysics, 2007(3):490-492.
[11] 闫相桥, 武海鹏. 正交各向异性材料三维热传导问题的有限元列式[J]. 哈尔滨工业大学学报, 2003(4):405-409.
YAN Xiangqiao, WU Haipeng. Finite element formulation of three-dimensional heat conduction in orthotropic materials[J]. Journal of Harbin Institute of Technology, 2003(4): 405-409.
[12] 姚穆, 施楣梧. 蛋白质纤维的导热性及其方向性差异[J]. 西安工程大学学报, 1994, 15(1):89-94.
YAO Mu, SHI Meiwu. Thermal conductivity and directional difference of protein fibers[J]. Journal of Xi'an Polytechnic University, 1994, 15(1):89-94.
[13] 耿长军, 刘让同, 胡泽栋, 等. 机织物热传递有限元仿真及其分类模型[J]. 棉纺织技术, 2019, 47(8):22-25.
GENG Changjun, LIU Rangtong, HU Zedong, et al. Finite element simulation and classification model of woven fabric heat transfer[J]. Cotton Textile Technology, 2019, 47(8):22-25.
[14] YANG Bin, LI Xiaojing, HOU Yingzhen, et al. Non-invasive (non-contact) measurements of human thermal physiology signals and thermal comfort/discomfort poses: a review[J]. Energy & Buildings, 2020, 224:1-7.
[1] 石路健, 宋亚伟, 谢汝义, 高志超, 房宽峻. 莱赛尔机织物防原纤化前处理工艺优化[J]. 纺织学报, 2023, 44(12): 96-105.
[2] 王青, 梁高翔, 殷俊清, 盛晓超, 吕绪山, 党帅. 新型气流牵伸通道结构模型的构建与性能分析[J]. 纺织学报, 2023, 44(11): 52-60.
[3] 王旭, 闵尔君, 李少聪, 张文强, 彭旭光. 基于平织机的管状三维机织物设计及其矩阵模型[J]. 纺织学报, 2023, 44(08): 103-109.
[4] 高艺华, 钱付平, 王晓维, 汪虎明, 高杰, 陆彪, 韩云龙. 纺织车间定向均流送风口结构设计及其送风性能[J]. 纺织学报, 2023, 44(08): 189-196.
[5] 连力平, 杨鹏程, 余子健, 龙阳昭, 肖渊. 织物表面激光打标工艺参数的数值模拟及选取方法[J]. 纺织学报, 2023, 44(06): 121-128.
[6] 朱晓荣, 向攸慧, 何佳臻, 翟丽娜. 低辐射热条件下附加相变材料织物的蓄放热双重特性[J]. 纺织学报, 2023, 44(06): 152-160.
[7] 樊百林, 张昌睿, 郭佳华, 黄钢汉, 尉国梁. 基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化[J]. 纺织学报, 2023, 44(06): 200-206.
[8] 周赳, 胡伊丽. 等经浮长的三纬组合全显结构设计与应用[J]. 纺织学报, 2023, 44(06): 78-84.
[9] 缪莹, 熊诗嫚, 郑敏博, 唐建东, 张慧霞, 丁彩玲, 夏治刚. 高光洁处理对聚酰亚胺短纤纱及其织物性能的影响[J]. 纺织学报, 2023, 44(02): 118-127.
[10] 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142.
[11] 应志平, 王伟青, 吴震宇, 胡旭东. 三维正交机织复合材料的冲后压缩性能[J]. 纺织学报, 2023, 44(01): 129-135.
[12] 朱晓荣, 何佳臻, 向攸慧, 王敏. 热防护服蓄热防护与放热危害双重特性的研究进展[J]. 纺织学报, 2023, 44(01): 228-237.
[13] 代璐, 胡泽旭, 王研, 周哲, 张帆, 朱美芳. 聚苯硫醚/石墨烯纳米复合纤维的燃烧和炭化行为[J]. 纺织学报, 2023, 44(01): 71-78.
[14] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
[15] 孙戬, 姜博艺, 张守京, 胡胜. 异纤分拣机剔除喷管结构参数对其性能的影响[J]. 纺织学报, 2022, 43(10): 169-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!