纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 83-89.doi: 10.13475/j.fzxb.20220604901

• 纺织工程 • 上一篇    下一篇

单向导湿纬编成形织物的结构设计及其性能

丁玉琴, 董智佳(), 丛洪莲, 葛美彤   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2022-06-20 修回日期:2022-11-16 出版日期:2023-11-15 发布日期:2023-12-25
  • 通讯作者: 董智佳(1986—),女,副教授,博士。主要研究方向为针织成形织物结构研发。E-mail: dongzj0921@163.com
  • 作者简介:丁玉琴(1998—),女,硕士生。主要研究方向为纬编成形织物结构与功能开发。
  • 基金资助:
    国家自然科学基金项目(61902150)

Structural design and performance of unidirectional moisture-transfer weft-knitted forming fabrics

DING Yuqin, DONG Zhijia(), CONG Honglian, GE Meitong   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2022-06-20 Revised:2022-11-16 Published:2023-11-15 Online:2023-12-25

摘要:

为了解决夏季运动服装穿着出汗后内层潮湿且黏腻的不适感,基于差动毛细效应,选用55.5 dtex(14 f)的涤纶作为地纱,搭配93.3 dtex(384 f)超细纤维涤纶以及92.2 dtex(72 f)常规涤纶作为面纱,应用圣东尼单面无缝机设计了5种不同结构的织物,研究和比较每种组织的单向导湿性能,以及不同结构织物的导湿规律。结果表明:93.3 dtex(384 f)纱线组得到的附加压力差大于92.2 dtex(72 f)纱线组,具有良好的单向导湿能力,水分管理评级均在3级以上;组织结构中,地纱和面纱均成圈的均匀结构数量越多,导湿效果越显著,因此,均匀结构数量多的组织适合配置于出汗量较多的区域;与均匀结构相比,地纱和面纱不全成圈的松散结构轻薄透气,适合配置于过渡区域。

关键词: 纬编单面织物, 成形结构, 单向导湿, 添纱组织, 毛细效应

Abstract:

Objective Sweating during summer exercise can easily cause the human body to feel moist and sticky. Therefore, it is important to improve the moisture-wicking capability as well as the heat and humidity comfort of summer sportswear. Sweating and heat dissipation vary from part to part of the body, so different functional fabrics designed in different parts have great benefits for comfort. But the process of sewing fabrics with different characteristics at different positions is complicated and has low production efficiency. Therefore, seamless design and integrated positioning forming technology can be used.

Method When the yarn density of the surface layer of the fabric was greater than the inner layer, the additional pressure of the surface layer was greater than that of the inner layer, and the moisture can move from the interior to the surface, which was called the differential capillary effect. Based on this effect, 55.5 dtex(14 f) polyester was selected as the ground yarn, and 93.3 dtex(384 f) superfine fiber polyester yarn and 92.2 dtex(72 f) conventional polyester yarn were selected as the veils. Santoni seamless machine was adopted to design 5 different structures of fabrics, then the influence of different yarn types and structures on the fabric's moisture-transfer was investigated.

Results The graph of contact angle changes with time showed that among the three kinds of yarns, the liquid diffuses fastest in 93.3 dtex(384 f) yarns and slowest in 55.5 dtex(14 f) yarns(Fig. 4). The wicking height experiment showed that the longitudinal wicking effect of the combination of 93.3 dtex(384 f) yarn and 55.5 dtex(14 f) ground yarn was more significant than that of 92.2 dtex(72 f) yarn(Tab. 2). The difference between the liquid diffusion shape obtained from the drip diffusion experiment and the longitudinal and transverse wicking was consistent, indicating that the longitudinal diffusion effect of liquid in the fabric was better(Fig. 5). The accumulative one-way transfer capacity in the MMT water management experiment was F1>F4>F3>F2>F5 from large to small(Fig. 6). The overall moisture management capacity (OMMC) showed that the combined rating of 93.3 dtex(384 f) yarn for the veil and 55.5(14 f) dtex(14 f) yarn for the ground was above grade 3, which had better unidirectional moisture-transfer capacity, F1 and F4 have the best moisture-transfer capacity among the two raw materials(Fig. 6). The fiber diameters of 55.5 dtex(14 f) yarn, 92.2 dtex(72 f) yarn, and 93.3 dtex(384 f) yarn measured were 5.448, 15.548 and 28.343 μm(Tab. 4). It was calculated that the equivalent capillary radius of the three yarns were 0.061 7, 1.757 1 and 3.211 μm, respectively. It was concluded that the capillary pressure difference between 55.5(14 f) dtex yarn and 93.3 dtex(384 f) yarn was 16.647 4 kPa, and that between 55.5 dtex yarn and 92.2 dtex(72 f) yarn is 5.282 4 kPa. This proved that the differential capillary effect of different f-number yarns was significant.

Conclusion The results showed that 93.3 dtex(384 f) yarn had a higher additional pressure difference than the 92.2 dtex(72 f) yarn group. The superfine polyester yarn group had good unidirectional moisture-tranfer capactity, and the water management rating was above grade 3. In the stitches, the more the number of uniform structures in which the ground yarn and the veil were looped, the more significant the moisture-tranfer effect. Therefore, the structure with more uniform structures were suitable for the areas with more sweat. Compared with the uniform structure, the loose structure with an incomplete loop of the ground yarn was light, thin and permeble, which was suitable for configuration in the transition area. Among the five structures, F1 with uniform structure had the best unidirectional moisture-tranfer capacity, which was suitable for areas with large sweating volume, such as the chest and back; F2 and F4 with loose structure had good moisture-tranfer capacity and were suitable for transition structure; F3 and F5 are thin and permeable, suitable for armpit, side, and other positions.

Key words: weft single jersey fabric, forming structure, unidirectional moisture-transfer, plated stitch, capillary effect

中图分类号: 

  • TS186.1

图1

差异化单纤密度纱线传导水分过程示意图"

图2

5种组织结构意匠图与线圈图"

图3

不同线圈结构归类"

表1

织物基本工艺参数"

织物
编号
组合
编号
花型 面密度/
(g·
m-2)
厚度/
mm
纵密/
(横列·
(5 cm)-1)
横密/
(纵行·
(5 cm)-1)
1-F1 F1 130 0.72 80 100
1-F2 F2 138 0.90 90 120
1-F3 组合1 F3 130 0.75 90 95
1-F4 F4 144 0.83 80 100
1-F5 F5 115 0.90 120 120
2-F1 F1 120 0.78 80 105
2-F2 F2 131 0.94 100 120
2-F3 组合2 F3 119 0.80 85 100
2-F4 F4 125 0.92 80 90
2-F5 F5 116 0.91 110 120

图4

不同纱线接触角随时间的变化"

表2

织物试样芯吸高度测试结果"

织物编号 芯吸高度/mm
纵向 横向
1-F1 24.8 20.5
1-F2 24.2 19.0
1-F3 23.8 21.3
1-F4 23.2 20.8
1-F5 20.2 18.3
2-F1 23.5 19.9
2-F2 23.4 18.8
2-F3 21.5 19.0
2-F4 22.2 19.5
2-F5 18.8 15.5

图5

5种织物滴水扩散40 s后示意图"

表3

MMT水分管理实验结果"

织物
编号
浸湿
时间/s
吸汗速度/
(%·s-1)
最大扩散
半径/mm
液体扩散
速度/
(mm·s-1)
OMMC值
上层 下层 上层 下层 上层 下层 上层 下层
1-F1 2.909 0.297 65.060 64.166 24.0 30 5.143 18.684 0.898
1-F2 2.546 0.312 79.483 63.234 27.0 29 6.231 16.962 0.679
1-F3 2.778 0.334 77.802 65.380 26.0 30 5.991 16.895 0.753
1-F4 3.053 0.328 68.242 60.858 21.0 29 4.781 16.729 0.803
1-F5 3.284 0.325 71.211 57.919 22.0 26 4.858 16.064 0.517
2-F1 2.528 2.184 73.415 70.666 30.0 28 6.851 7.322 0.641
2-F2 2.403 2.043 75.198 68.945 30.0 29 7.144 7.395 0.557
2-F3 2.593 1.940 71.545 68.399 26.7 30 6.488 8.520 0.615
2-F4 2.675 1.987 66.847 66.272 27.0 26 5.727 7.479 0.636
2-F5 2.341 2.200 73.986 67.878 29.0 28 7.261 7.533 0.442

图6

累积单向传递能力"

图7

织物截面纱线排布形成毛细孔隙示意图"

表4

3种纱线纤维直径与模型的毛细当量半径"

纱线线密度 纤维直径
d/μm
毛细管当量
半径r/μm
93.3 dtex(384 f) 5.448 0.617
92.2 dtex(72 f) 15.458 1.751
55.5 dtex(14 f) 28.343 3.211
[1] 王伟, 黄晨, 靳向煜. 单向导湿织物的研究现状及进展[J]. 纺织学报, 2016, 37(5): 167-172.
WANG Wei, HUANG Chen, JIN Xiangyu. Research status and progress of unidirectional wet fabrics[J]. Journal of Textile Research, 2016, 37(5): 167-172.
[2] 齐园园. 纳米纤维包覆长丝纱的芯吸导水机理研究[D]. 天津: 天津工业大学, 2018:62-66.
QI Yuanyuan. Study on the wicking and water conduction mechanism of nanofiber-coated filament yarn[D]. Tianjin: Tiangong University, 2018:62-66.
[3] 蒋高明, 周濛濛, 郑宝平, 等. 绿色低碳针织技术研究进展[J]. 纺织学报, 2022, 43(1): 67-73.
JIANG Gaoming, ZHOU Mengmeng, ZHENG Baoping, et al. Research progress of green low-carbon knitting technology[J]. Journal of Textile Research, 2022, 43(1): 67-73.
doi: 10.1177/004051757304300202
[4] 袁鲁宁, 王建萍, 张冰洁, 等. 动态调湿控温立体针织物拓扑优化设计[J]. 纺织学报, 2021, 42(9): 70-75.
YUAN Luning, WANG Jianping, ZHANG Bingjie, et al. Topological optimization design of three-dimensional knitted fabrics with dynamic humidity regulation and temperature control[J]. Journal of Textile Research, 2021, 42(9): 70-75.
doi: 10.1177/004051757204200114
[5] 王莉, 张冰洁, 王建萍, 等. 基于仿生学的冬季针织运动面料开发与性能评价[J]. 纺织学报, 2021, 42(5): 66-72,89.
WANG Li, ZHANG Bingjie, WANG Jianping, et al. Development and performance evaluation of winter knitted sports fabrics based on bionics[J]. Journal of Textile Research, 2021, 42(5): 66-72,89.
[6] 雷敏, 李毓陵, 马颜雪, 等. 织物散湿性能的研究进展[J]. 纺织学报, 2020, 41(7): 174-181.
LEI Min, LI Yuling, MA Yanxue, et al. Research progress on moisture dissipation properties of fabrics[J]. Journal of Textile Research, 2020, 41(7): 174-181.
doi: 10.1177/004051757104100215
[7] 王其, 冯勋伟. 织物差动毛细效应模型及应用[J]. 东华大学学报(自然科学版), 2001, 27(3): 54-57.
WANG Qi, FENG Xunwei. Fabric differential capillary effect model and its application[J]. Journal of Donghua University (Natural Science), 2001, 27(3): 54-57.
[8] MAO N, YE J, QUAN Z Z, et al. Tree-like structure driven water transfer in 1D fiber assemblies for functional moisture-wicking fabrics[J]. Mater Des, 2020, 186: 8-16.
[9] 王艳萍, 陈晓倩, 夏伟, 等. 角质酶在涤纶织物表面改性中的应用[J]. 纺织学报, 2022, 43(5):136-142.
WANG Yanping, CHEN Xiaoqian, XIA Wei, et al. Application of keratinase in surface modification of polyester fabric[J]. Journal of Textile Research, 2022, 43 (5): 136-142.
[10] 龙海如. 针织学[M]. 2版. 北京: 中国纺织出版社, 2008:62-67.
LONG Hairu. Knitting[M]. 2nd ed. Beijing: China Textile & Apparel Press, 2008:62-67.
[11] LU Y Z, HONG Q Q, SUN F X, et al. Effect of yarn structure on the liquid moisture transport in yarns[J]. J Text Inst, 2022, 113(9): 1826-1831.
doi: 10.1080/00405000.2021.1950444
[12] 纪峰, 李娜, 宋冉风云, 等. 纺织材料芯吸性能建模预测研究进展[J]. 纺织学报, 2016, 37(9): 162-168.
JI Feng, LI Na, SONG Ranfengyun, et al. Research progress on modeling and prediction of wicking properties of textile materials[J]. Journal of Textile Research, 2016, 37(9): 162-168.
[1] 尹昂, 丛洪莲. 经编单向导湿织物设计与结构优化[J]. 纺织学报, 2023, 44(04): 86-91.
[2] 王洪杰, 胡忠文, 王赫, 凤权, 林童. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202.
[3] 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56.
[4] 张青松, 张迎晨, 邱振中, 吴红艳, 张志茹, 张夏楠. 凉感面料开发及其吸湿凉感机制研究[J]. 纺织学报, 2022, 43(02): 132-139.
[5] 刘杰 王府梅. 单向导湿机织物结构设计[J]. 纺织学报, 2018, 39(03): 50-55.
[6] 王伟 黄晨 靳向煜. 单向导湿织物的研究现状及进展[J]. 纺织学报, 2016, 37(05): 167-172.
[7] 郝习波 李辉芹 巩继贤 高新锋 焦海峰 张健飞 丁振翔. 单向导湿功能纺织品的研究进展[J]. 纺织学报, 2015, 36(07): 157-161.
[8] 张红霞;刘芙蓉;王静;祝成炎. 织物结构对吸湿快干面料导湿性能的影响[J]. 纺织学报, 2008, 29(5): 31-33.
[9] 范菲;齐宏进. 织物孔径特性与织物结构及芯吸性能的关系[J]. 纺织学报, 2007, 28(7): 38-41.
[10] 许瑞超;张一平;陈莉娜. 针织运动面料的差动毛细导湿性[J]. 纺织学报, 2007, 28(3): 20-22.
[11] 李东平;尹洪伟;赵艳霞. 珍珠纤维针织物的热湿舒适性[J]. 纺织学报, 2007, 28(11): 29-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!