纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 106-114.doi: 10.13475/j.fzxb.20220705901

• 染整与化学品 • 上一篇    下一篇

明胶基碳点的热解法制备及其阻燃与防伪应用

魏建斐1,2, 马国聪1, 张安莹1,3, 吴雨航1, 崔晓晴1, 王锐1,2()   

  1. 1.北京服装学院 材料设计与工程学院, 北京 100029
    2.北京服装学院 服装材料研究开发与评价北京市重点实验室,北京 100029
    3.天津工业大学 材料科学与工程学院, 天津 300387
  • 收稿日期:2022-07-18 修回日期:2023-09-07 出版日期:2023-12-15 发布日期:2024-01-22
  • 通讯作者: 王锐(1963—),女,教授,博士。主要研究方向为高分子材料的高性能化与功能化。E-mail: clywangrui@bift.edu.cn
  • 作者简介:魏建斐(1986—),男,副教授,博士。主要研究方向为荧光纳米材料及功能纤维的制备与应用。
  • 基金资助:
    北京服装学院高水平教师队伍建设专项资金资助项目(BIFTXJ202225);北京市教委科技计划一般项目(KM202110012007);北京市自然科学基金面上项目(2222054);北京学者项目(RCQJ20303)

Preparation of gelatin-based carbon dots by pyrolysis and its applications in flame retardant and anti-counterfeiting

WEI Jianfei1,2, MA Guocong1, ZHANG Anying1,3, WU Yuhang1, CUI Xiaoqing1, WANG Rui1,2()   

  1. 1. School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Key Laboratory of Clothing Materials Research, Development and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
    3. School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2022-07-18 Revised:2023-09-07 Published:2023-12-15 Online:2024-01-22

摘要:

为降低碳点(CDs)的制备成本,提高碳点的生产效率,以成本较低的明胶和尿素为前驱体,采用生产效率高的热解法并在优化制备条件之后得到明胶基氮掺杂碳点(NCDs),将其与聚对苯二甲酸乙二醇酯(PET)共混,得到PET-NCDs阻燃改性复合材料。对NCDs的形貌结构与PET-NCDs的热稳定性和阻燃性进行表征测试。结果表明:NCDs具有激发波长依赖性,属于类球形结构,粒径尺寸在2.03~4.62 nm之间,晶格间距为0.21 nm,其表面含有羟基、氨基等官能团;荧光量子产率达47.12%,平均荧光寿命为4.92 ns;当NCDs的质量分数为5%时,PET-NCDs较PET的热稳定性明显上升,极限氧指数达26%,UL-94测试为V-2级,热释放速率峰值降低42%;以NCDs作为荧光剂配备荧光墨水,打印出的图案具有防伪效果。

关键词: 碳点, 明胶, 氮掺杂, 热解法, 阻燃, 荧光防伪

Abstract:

Objective Carbon dots (CDs), as a type of carbon nanomaterial, possess inherent fluorescence as a characteristic property. They also hold significant potential as flame retardants in polymer materials. However, the current cost of preparing carbon dots is high. The objective of this study is to explore new precursor materials, potentially with lower cost, for carbon dot synthesis, enhance the carbon dot synthesis process, reduce production costs, improve production efficiency, and investigate the application of modified carbon dots in PET flame retardancy and fluorescence anti-counterfeiting.
Method This research employs low-cost and non-toxic gelatin and urea as precursors and utilizes a high-efficiency pyrolysis method to synthesize gelatin-based nitrogen-doped carbon dots (NCDs). The study also optimizes the synthesis conditions, including precursor-to-feed ratio, reaction temperature, and reaction time. Following the purification of NCDs synthesized under the optimal conditions, their morphology, structure, and fluorescence properties are characterized and tested. Furthermore, NCDs are blended with PET to produce PET-NCDs flame-retardant modified composite materials, and the thermal stability, flame-retardant performance, and combustion behavior of PET-NCDs are examined. NCDs are also employed as fluorescent agents to prepare fluorescent ink, and their anti-counterfeiting effectiveness is assessed.
Results The test results show that the optimal preparation conditions for synthesizing NCDs using gelatin and urea as precursors are as follows: a mass ratio of gelatin to urea of 5:1.1, a reaction temperature of 260 ℃, and a reaction time of 12 hours (Fig. 1). TEM characterization reveals that NCDs have a quasi-spherical structure, with particle sizes ranging from 2.03 to 4.62 nm and an interplanar spacing of 0.21 nm (Fig. 2). Characterization using XPS, FT-IR, and NMR H indicates the presence of functional groups such as hydroxyl and amino groups on the surface of NCDs (Figs. 3 - 5). The UV-vis spectrum of NCDs in ethanol solution exhibits an absorption peak at 241 nm, attributed to the π-π* transition of sp2 bonds, and the solution displays prominent blue fluorescence under a 365 nm UV lamp (Fig. 6(a)). Fluorescence emission spectra of NCDs under different excitation wavelengths demonstrate significant changes in fluorescence intensity, indicating typical excitation wavelength dependency (Fig. 6(b)). Using an integrating sphere, the fluorescence quantum yield of NCDs is determined to be 47.12% under optimal conditions (Fig. 6(c)). The fluorescence lifetime of NCDs is measured using a fluorescence spectrometer, excited with 360 nm light, and the decay curve at 430 nm is fitted using an exponential function (exponential). Analysis reveals two fluorescence emission centers with lifetimes of 2.37 ns and 6.70 ns, resulting in an average lifetime of 4.92 ns (Fig. 6(d)). In the characterization of NCDs-PET with a 5% NCDs doping level, the thermal stability of PET-NCDs is significantly improved compared to pure PET, as evidenced by TG and DTG curves, with a notable reduction in the maximum mass loss rate and increased residual char content at 700 ℃ (Tab. 1). Flame-retardant performance has an elevated limiting oxygen index (LOI) of 26% and its vertical combustion test (UL-94) is rated V-2 (Tab. 2). Cone calorimetry testing demonstrates a 42% reduction in the peak heat release rate for PET-NCDs compared to PET, with lower overall heat release rates and the formation of an evident expanded char layer after combustion (Fig. 8 and Fig. 9). Additionally, the fluorescent ink containing NCDs produces patterns that are invisible under natural light but visible under UV light, thus demonstrating its anti-counterfeiting effect (Fig. 10).
Conclusion NCDs synthesized through the pyrolysis method using gelatin and urea as precursors exhibit excellent fluorescence properties and a high fluorescence quantum yield. When incorporated into PET through blending, they demonstrate effective flame-retardant properties, making them suitable for the production of fluorescent ink with potential applications in fluorescence-based anti-counterfeiting.

Key words: carbon dot, gelatin, nitrogen doping, pyrolysis, flame retardant, fluorescent anti-counterfeiting

中图分类号: 

  • O613.7

图1

NCDs制备条件的优化结果"

图2

NCDs的透射电镜照片和粒径分布直方图"

图3

NCDs的XPS表征结果"

图4

NCDs的红外光谱图"

图5

NCDs的核磁共振氢谱图"

图6

NCDs 光学特征的表征结果"

图7

PET与PET-NCDs的热重分析曲线"

表1

热重测试结果"

样品名称 初始分解
温度
Ton set/℃
最大分解
温度
Tmax/℃
最大质量
损失速率/
(%·min-1)
700 ℃时
的残炭
量/%
PET 374.01 437.96 20.77 11.56
PET-NCDs 340.79 437.18 16.98 15.08

表2

LOI值和垂直燃烧测试结果"

样品
名称
LOI值/
%
UL-94防火
等级
是否有
熔滴
熔滴是否引
燃脱脂棉
PET 21
PET-NCDs 26 V-2

图8

PET与PET-NCDs的锥形量热曲线"

表3

锥形量热结果"

样品名称 引燃时
间/s
热释放速
率峰值/
(kW·m-2)
平均热释
放速率/
(kW·m-2)
总热释
放量/
(MJ·m-2)
PET 59 1 087.5 366.34 64.62
PET-NCDs 66 635.2 377.62 61.91

图9

采用锥形量热法燃烧后拍的炭层照片"

图10

以NCDs溶液为荧光墨水的图案在365 nm紫外灯照射下的拍摄图片"

[1] ZHOU Y Q, MINTZ K J, SHARMA S K, et al. Carbon dots: diverse preparation, application, and perspective in surface chemistry[J]. Langmuir, 2019, 35:9115-9132.
[2] PARK S J, YANG H K. Ultra-fast synthesis of carbon dots using the wasted coffee residues for environmental remediation[J]. Current Applied Physics, 2022, 36:9-15.
[3] WANG R, GU W W, LIU Z L, et al. Simple and green synthesis of carbonized polymer dots from nylon 66 waste fibers and its potential application[J]. ACS Omega, 2021, 6:32888-32895.
[4] ElEMIKE E E, ADEYEMI J, ONWUDIWE D C, et al. The future of energy materials: a case of MXenes-carbon dots nanocomposites[J]. Journal of Energy Storage, 2022. DOI:10.1016/j.est.2022.104711.
[5] WAREING T C, GENTILE P, PHAN A N, et al. Biomass-based carbon dots: current development and future perspectives[J]. ACS Nano, 2021, 15(10):15471-15501.
[6] KHAN S, VERMA N C, CHETHANA, et al. Carbon dots for single-molecule imaging of the nucleolus[J]. ACS Appl Nano Mater, 2018, 1(2): 483-487.
[7] PANDEY M, BALACHANDRAN M. Green luminescence and irradiance properties of carbon dots cross-linked with polydimethylsiloxane[J]. J Phys Chem C, 2019, 123(32):19835-19843.
[8] HSIN T H, DHENADHAYALAN N, LIN K C, et al. Ligusticum striatum-derived carbon dots as nanocarriers to deliver methotrexate for effective therapy of cancer cells[J]. ACS Appl Bio Mater, 2020, 3(12):8786-8794.
[9] PAUDYAL S, VALLEJO F A, CILINGIR E K, et al. DFMO carbon dots for treatment of neuroblastoma and bioimaging[J]. ACS Appl Mater Interfaces, 2022, 5(7): 3300-3309.
[10] CHANDRA A, SINGH N. Cell microenvironment pH sensing in 3D microgels using fluorescent carbon dots[J]. ACS Biomater Sci Eng, 2017, 3(12):3620-3627.
[11] HU Z F, SHI D, WANG G H, et al. Carbon dots incorporated in hierarchical macro/mesoporous g-C3N4/TiO2 as an all-solid-state Z-scheme heterojunction for enhancement of photocatalytic H2 evolution under visible light[J]. Applied Surface Science, 2022. DOI: 10.1016/j.apsusc.2022.154167.
[12] 成世杰, 王晨洋, 张宏伟, 等. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(6):93-98.
CHENG Shijie, WANG Chenyang, ZHANG Hongwei, et al. Effect of boron nitrogen doped carbon dots on ultraviolet-protection of cotton fabrics[J]. Journal of Textile Research, 2020, 41(6): 93-98.
[13] SHI J H, ZHOU Y H, NING J, et al. Prepared carbon dots from wheat straw for detection of Cu2+ in cells and zebrafish and room temperature phosphorescent anti-counterfeiting[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022. DOI:10.1016/j.saa.2022.121597.
[14] YU S J, LU S Y, TAN D F, et al. Nitrogen and phosphorus co-doped carbon dots for developing highly flame retardant poly (vinyl alcohol) composite films[J]. European Polymer Journal, 2022. DOI:10.1016/j.eurpolymj.2021.110970.
[15] 顾伟文, 王文庆, 魏丽菲, 等. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织 学报, 2021, 42(7):1-10.
GU Weiwen, WANG Wenqing, WEI Lifei, et al. Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate)[J]. Journal of Textile Research, 2021, 42(7): 1-10.
[16] GU W W, DONG Z F, ZHANG A Y, et al. Functionalization of PET with carbon dots as copolymerizable flame retardants for the excellent smoke suppressants and mechanical properties[J]. Polymer Degradation and Stability, 2022. DOI:10.1016/j.polymdegradstab.2021.109766.
[17] RAHIMIAghdam T, SHARIATINIA Z, HAKKARAINEN M, et al. Nitrogen and phosphorous doped graphene quantum dots: excellent flame retardants and smoke suppressants for polyacrylonitrile nanocomposites[J]. Journal of Hazardous Materials, 2020. DOI: 10.1016/j.jhazmat.2019.121013.
[18] VARSHA R, KIZHAKAYIL R N. Fluorescent carbon dots as biosensor, green reductant, and Biomarker[J]. ACS Omega 2021, 6(36): 23475-23484.
[19] LIU C, LI H Y, CHENG R, et al. Facile synthesis, high fluorescence and flame retardancy of carbon dots[J]. J Mater Sci Technol, 2022, 104: 163-171.
[20] GANJKHANLOU Y, MARIS J J E, et al. Fluorescence in glutathione-derived carbon dots revisited[J]. J Phys Chem C, 2022, 126:2720-2727.
[21] DANG H, HUANG L K, ZHANG Y, et al. Large-scale ultrasonic fabrication of white fluorescent carbon dots[J]. Ind Eng Chem Res, 2016, 55:5333-5341.
[22] WANG C J, YANG M, SHI H X, et al. Carbon quantum dots prepared by pyrolysis: investigation of the luminescence mechanism and application as fluorescent probes[J]. Dyes and Pigments, 2022. DOI:10.1016/j.dyepig.2022.110431.
[23] 张晓光, 时海军, 刘杰, 等. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5):237-242.
ZHANG Xiaoguang, SHI Haijun, LIU Jie, et al. Effect of carbon nanotubes on flammability and mechanical property of intumescent flame retardant natural rub-ber[J]. Materials Reports, 2022, 36(5): 237-242.
[24] XIA Y R, CHAI W H, LIU Y H, et al. Facile fabrication of starch-based, synergistic intumescent and halogen-free flame retardant strategy with expandable graphite in enhancing the fire safety of polypropy-lene[J]. Industrial Crops & Products, 2022. DOI:10.1016/j.indcrop.2022.115002.
[1] 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122.
[2] 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25.
[3] 张文琪, 李莉莉, 胡泽旭, 魏丽菲, 相恒学, 朱美芳. 基于均三嗪环结构的聚己内酰胺6复合树脂制备及其抗熔滴阻燃特性[J]. 纺织学报, 2023, 44(11): 1-8.
[4] 肖云超, 杨雅茹, 郭健鑫, 王童谣, 田强. 高温自交联抗熔滴阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 151-159.
[5] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[6] 钱耀威, 殷连博, 李家炜, 杨晓明, 李耀邦, 戚栋明. 聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能[J]. 纺织学报, 2023, 44(09): 144-152.
[7] 尚小愉, 朱坚, 王滢, 张先明, 陈文兴. 侧基含磷阻燃共聚酯的制备及其固相增黏反应[J]. 纺织学报, 2023, 44(07): 1-9.
[8] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[9] 杨海富, 罗丽娟, 师建军, 马晓光, 郑振荣. 阻燃防水多功能涤纶篷布的制备及其性能[J]. 纺织学报, 2023, 44(06): 168-174.
[10] 谭启飞, 陈梦莹, 马晟晟, 孙明祥, 代春鹏, 罗仑亭, 陈益人. 湖羊毛非织造阻燃吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(05): 147-154.
[11] 陈智杰, 蒋继康, 虞一浩, 符晔, 吴金丹, 戚栋明. 硅磷改性碳酸钙的合成及其在聚酰胺涂层中应用[J]. 纺织学报, 2023, 44(04): 146-153.
[12] 吴俊雄, 尉霞, 罗璟娴, 闫姣儒, 吴磊. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(03): 60-66.
[13] 庞明科, 王淑花, 史晟, 薛立钟, 郭红, 高承永, 卢建军, 赵晓婉, 王子涵. 废旧聚对苯二甲酸乙二醇酯纤维醇解制备阻燃水性聚氨酯及其应用[J]. 纺织学报, 2023, 44(02): 214-221.
[14] 任嘉玮, 张圣明, 吉鹏, 王朝生, 王华平. 磷硅改性阻燃抑熔滴聚酯纤维的制备及其性能[J]. 纺织学报, 2023, 44(02): 1-10.
[15] 蒋琦, 刘云, 朱平. 茶多酚基阻燃/防紫外线棉织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 222-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!