纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 123-129.doi: 10.13475/j.fzxb.20220900801

• 染整与化学品 • 上一篇    下一篇

铽-金属有机框架改性棉织物的制备及其pH值探测性能

陈贝, 任李培, 肖杏芳()   

  1. 武汉纺织大学 省部共建纺织新材料与先进加工技术国家重点实验室, 湖北 武汉 430200
  • 收稿日期:2022-09-05 修回日期:2023-09-08 出版日期:2023-12-15 发布日期:2024-01-22
  • 通讯作者: 肖杏芳(1990—),女,副教授,博士。主要研究方向为纺织材料与纺织品设计。E-mail:xingfangxiao1@163.com
  • 作者简介:陈贝(1996—),男,硕士生。主要研究方向为功能纺织品。
  • 基金资助:
    国家自然科学基金项目(52103064);武汉市应用基础前沿项目(2022023988065195)

Preparation and pH-detection properties of Tb-metal-organic frameworks modified cotton fabric

CHEN Bei, REN Lipei, XIAO Xingfang()   

  1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2022-09-05 Revised:2023-09-08 Published:2023-12-15 Online:2024-01-22

摘要:

为解决金属有机框架材料(MOFs)易团聚不易回收的问题,同时提高其利用率,以棉织物为基底制备了柔性荧光pH值传感材料。利用具有荧光性能的稀土金属Tb与相应配体并添加阻断剂制备微纳米Tb-MOFs,通过热压法将Tb-MOFs粉末负载在棉织物表面,表征其表面形貌、晶体结构和荧光性能等,并分析了其pH值探测性能。结果表明:棉织物表面形成了致密的微纳米Tb-MOFs薄膜,且与粉末状态的Tb-MOFs晶体形态一致;Tb-MOFs改性棉织物(Tb-MOFs-CF)在365 nm波长的紫外光照射下发出明亮的蓝绿色荧光,其荧光强度显示出了很强的pH值依赖性;Tb-MOFs-CF在510 nm处的荧光强度与缓冲溶液的pH值呈线性关系,线性响应范围为pH值1~5,且对于酸性、碱性与中性的溶液其酸碱度检测具有较快的响应性。

关键词: 金属有机框架材料, pH值探测, 荧光性能, 稀土发光材料, 棉织物

Abstract:

Objective Luminescent metal-organic frameworks (MOFs) are a new type of inorganic-organic hybrid materials made from an assembly of metal ions with organic linkers. They have excellent applications in the fields of fluorescence detection, radiometric nanothermometers, luminescent thin films, and so on. However, the inherent characteristics of particle materials restrict their further application in practice. Therefore, it is of great importance to deposit MOFs onto suitable substrates to reduce aggregation and improve utilization.
Method Flexible fluorescent pH sensing materials were prepared using cotton fabric as the substrate. Terbium nitrate hexahydrate, fumaric acid, and oxalic acid were used to prepare micro-nano Terbium-metal-organic frameworks (Tb-MOFs) particles by adding the sodium acetate as a blocking agent with the same group of the ligands. Then, the Tb-MOFs particles were coated on the surface of the cotton fabric by hot pressing method to obtain Tb-MOFs-cotton fabric (Tb-MOFs-CF). The morphology, crystallization, fluorescence, and pH sensing properties of the Tb-MOFs-CF were characterized and analyzed.
Results The Tb-MOFs particles with uniform particle size were synthesized by hydrothermal method, and the particle size in the range of 4-6 μm (Fig. 2). The dense and uniform micro-nano Tb-MOFs were formed on the surface of the cotton fabric, and the Tb-MOFs-CF has the same white appearance and crisscross textures with the pristine cotton fabric (Fig. 3). The Tb-MOFs-CF exhibited the characteristic peaks of the pristine cotton fabric and Tb-MOFs, indicating the hot press process has no significant influence on the crystal structure of Tb-MOFs (Fig. 4). The water contact angel test of the pristine cotton fabric and Tb-MOFs-CF are 0°, indicating that both have the good hydrophilicity (Fig. 5). The optical images of the Tb-MOFs-CF is blue-green under UV light, as the cotton fabric is blue and Tb-MOFs is green (Fig. 6), which revealed the good fluorescent properties of Tb-MOFs-CF. The fluorescence spectra of the Tb-MOFs-CF in the solution of different pH (from 1-13) using 510 nm as the excitation wavelength showed that there are mainly two peaks from 375-650 nm (Fig. 7). The broad peak about 415 nm is the emission of the cotton fabric, and the peaks at about 510 nm is the typical peak of the Tb ions. The position, shape, and range of the peaks remain unchanged, but the intensity changes obviously with different pH. With the increase of the pH from 1-5, the fluorescence intensity decreased obviously. Then, with the increase of the pH from 8-13, the fluorescence intensity showed no significant change. However, there were obviously changes in fluorescence intensity in the pH 1, 7, and 13. The curve of fluorescence intensity vs. pH showed that at acidic conditions, the fluorescence intensity decreased obviously, while at alkaline conditions, the fluorescence intensity leveled out (Fig. 8). Especially in the range of pH from 1-5, the fluorescence intensity was in linear relation with pH. Therefore, the pH dependence of the Tb ions could be used as the fluorescent sensor. The brightness of fluorescence color for Tb-MOFs-CF was different under UV light, in the pH 1, 7, and 13, demonstrating the Tb-MOFs-CF could be applied for detecting acid-base (Fig. 9). Besides, the color of the Tb-MOFs-CF under UV light had no difference with different wash times, indicating the Tb-MOFs is firmly adhered on the Tb-MOFs-CF (Fig. 10).
Conclusion The micro-nano Tb-MOFs are uniformly coated on cotton fabric and retain their crystal morphology with good adhesion. Tb-MOFs-CF demonstrates excellent fluorescence properties and exhibits rapid response in the detection of pH. Especially at acidic conditions, the characteristic emission peak of Tb ions shows a linear relationship with pH.

Key words: terbium metal-organic framework, pH value detecting, fluorescence property, rare earth luminescence material, cotton fabric

中图分类号: 

  • TS190.8

图1

Tb-MOFs的光学照片"

图2

Tb-MOFs晶体的SEM照片(×2 000)以及对应的粒径分布"

图3

改性前后棉织物的实物图以及SEM照片"

图4

棉织物、Tb-MOFs和Tb-MOFs-CF的XRD图谱"

图5

棉织物和Tb-MOFs-CF的接触角"

图6

棉织物与Tb-MOFs-CF在紫外灯照射下的光学照片"

图7

Tb-MOFs-CF的荧光pH值"

图8

Tb-MOFs-CF的pH值荧光探测响应拟合曲线"

图9

Tb-MOFs-CF在不同pH值溶液中浸泡后的荧光照片"

图10

Tb-MOFs-CF经pH值为1的溶液浸泡不同次数后的荧光照片"

[1] 管斌斌, 李庆, 陈灵辉, 等. 基于锆-有机骨架的印染废水中Cr(Ⅵ)的荧光检测[J]. 纺织学报, 2021, 42(2): 122-128.
GUAN Binbin, LI Qing, CHEN Linghui, et al. Fluorescence detection of Cr(VI) from printing and dyeing wastewater by zirconium-organic framework[J]. Journal of Textile Research, 2021, 42(2): 122-128.
[2] 李庆, 陈灵辉, 李丹, 等. 金属-有机骨架光催化降解染料的研究进展[J]. 纺织学报, 2021, 42(12): 188-195.
LI Qing, CHEN Linghui, LI Dan, et al. Research progress in photocatalytic degradation of dyes using metal-organic frameworks[J]. Journal of Textile Research, 2021, 42(12): 188-195.
[3] CUI Yuanjing, ZOU Wenfeng, SONG Ruijing, et al. A ratiometric and colorimetric luminescent thermometer over a wide temperature range based on a lanthanide coordination polymer[J]. Chemical Communications, 2014, 50(6): 719-721.
[4] 荣介伟. 镧系金属有机骨架化合物在荧光探测领域的应用[J]. 广州化工, 2020, 48(21): 12-13, 49.
RONG Jiewei. Lanthanide metal-organic skeletal compounds for fluorescence detection[J]. Guangzhou Chemical Industry, 2020, 48(21): 12-13, 49.
[5] 李庆, 管斌斌, 王雅, 等. 光敏剂敏化Cu-有机骨架对活性深蓝K-R的高效光催化降解[J]. 纺织学报, 2020, 41(10): 87-93.
LI Qing, GUAN Binbin, WANG Ya, et al. Photosensitizers sensitized Cu-organic framework for highly efficient photocatalytic degradation of Reactive Dark Blue K-R[J]. Journal of Textile Research, 2020, 41(10): 87-93.
[6] WEI Xiaohe, ZHAO Guangdong, FENG Pengfei, et al. Core-shell lanthanide-doped nanoparticles@Eu-MOF nanocomposites for anticounterfeiting applications[J]. ACS Applied Nano Materials, 2022, 5(1): 1161-1168.
[7] LI Jingxian, LUO Mengyu, JIN Can, et al. Plasmon-enhanced electrochemiluminescence of PTP-decorated Eu MOF-based Pt-tipped Au bimetallic nanorods for the lincomycin assay[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 383-389.
[8] BEAMISH-COOK Jethro, SHANKLAND Kenneth, MURRAY Claire A, et al. Insights into the Mechanochemical Synthesis of MOF-74[J]. Crystal Growth & Design, 2021, 21(5): 3047-3055.
[9] ABBASI AmirReza, YOUSEFSHAHI Mohammadreza, AZADBAKHT Azadeh. Synthesis and characterization of azine-functionalized zinc cation metal-organic frameworks nanostructures upon silk fibers under ultrasound irradiation, study of pores effect on morphine adsorption affinity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498: 58-65.
[10] LIU Feilong, XU Hui. Development of a novel polystyrene/metal-organic framework-199 electrospun nanofiber adsorbent for thin film microextraction of aldehydes in human urine[J]. Talanta, 2017, 162: 261-267.
[11] LI Jie, YUAN Xiao, WU Yinan, et al. From powder to cloth: facile fabrication of dense MOF-76(Tb) coating onto natural silk fiber for feasible detection of copper ions[J]. Chemical Engineering Journal, 2018, 350: 637-644.
[12] 禹凡, 郑涛, 汤涛, 等. 基于金属有机框架化合物的非织造复合材料制备及其对废水中六价铬的去除[J]. 纺织学报, 2022, 43(3): 139-45.
YU Fan, ZHENG Tao, TANG Tao, et al. Preparation of nonwoven composites based on metal-organic frame compounds and removal of hexavalent chromium from wastewater[J]. Journal of Textiles Research, 2022, 43(3): 139-145.
[13] XU Xiaoyu, YAN Bing. An efficient and sensitive fluorescent pH sensor based on amino functional metal-organic frameworks in aqueous environment[J]. Dalton Transactions, 2016, 45(16): 7078-7084.
[14] XIAO Yunqing, CUI Yuanjing, ZHENG Qian, et al. A microporous luminescent metal-organic framework for highly selective and sensitive sensing of Cu2+ in aqueous solution[J]. Chemical Communications, 2010, 46(30): 5503-5505.
[1] 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122.
[2] 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34.
[3] 郑贤宏, 唐金好, 李长龙, 王炜. 中空磁性Fe3O4纳米球/MXene复合棉织物的制备及其电磁屏蔽性能[J]. 纺织学报, 2023, 44(11): 142-150.
[4] 王露砚, 张彩宁, 赵倩倩, 马志豪, 王煦漫. 紫外光/氨气双重响应超疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 160-166.
[5] 钱耀威, 殷连博, 李家炜, 杨晓明, 李耀邦, 戚栋明. 聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能[J]. 纺织学报, 2023, 44(09): 144-152.
[6] 帅旗, 孙硕, 成世杰, 张宏伟, 左丹英. 氮硼掺杂碳量子点/异氰酸酯型微胶囊复合整理棉织物及其防紫外线性能[J]. 纺织学报, 2023, 44(08): 126-132.
[7] 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150.
[8] 陈家辉, 梁跃耀, 陈妮, 房宽峻. 棉织物喷墨印花打印方式的调控及其应用[J]. 纺织学报, 2023, 44(07): 159-166.
[9] 谭家玲, 刘佳音, 于伟东, 殷允杰, 王潮霞. 基于SiO2微胶囊的多色谱温敏变色棉织物制备及其性能[J]. 纺织学报, 2023, 44(07): 167-174.
[10] 王伟, 吴嘉欣, 张晓云, 张传杰, 宫兆庆. 制浆用废旧棉织物的脱色性能及其机制[J]. 纺织学报, 2023, 44(07): 175-183.
[11] 胡安钟, 王成成, 钟子恒, 张丽平, 付少海. 氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 164-170.
[12] 王小艳, 马子婷, 许长海. 基于高耐碱高耐氧漂分散染料的涤盖棉织物漂染一浴加工工艺[J]. 纺织学报, 2023, 44(05): 38-45.
[13] 齐浩彤, 张林森, 侯秀良, 徐荷澜. 废食用油-水无盐体系活性染色棉织物的服用性能[J]. 纺织学报, 2023, 44(03): 126-131.
[14] 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213.
[15] 丁娟, 刘阳, 张晓飞, 郝克倩, 宗蒙, 孔雀. Fe/C多孔碳材料制备及其涂层棉织物的吸波性能[J]. 纺织学报, 2023, 44(02): 191-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!