纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 17-25.doi: 10.13475/j.fzxb.20220704301

• 纤维材料 • 上一篇    下一篇

生物相容性纳米纤维素自愈合水凝胶的构建及其性能

王汉琛1,2, 吴嘉茵1,2, 黄彪1, 卢麒麟1,2()   

  1. 1.福建农林大学 材料工程学院, 福建 福州 350002
    2.闽江学院 福建省新型功能性纺织纤维及材料重点实验室, 福建 福州 350108
  • 收稿日期:2022-12-13 修回日期:2023-05-18 出版日期:2023-12-15 发布日期:2024-01-22
  • 通讯作者: 卢麒麟(1989—),男,副教授,博士。主要研究方向为功能纳米纤维。E-mail:qilinlu@mju.edu.cn
  • 作者简介:王汉琛(1999—),男,硕士生。主要研究方向为生物质纤维纳米材料。
  • 基金资助:
    国家自然科学基金项目(32301529);福建省科技创新重点项目(高校类)(2021G02011);福建省自然科学基金面上项目(2021J011034);闽江学院引进人才项目(MJY18010)

Fabrication and properties of biocompatible nanocellulose self-healing hydrogels

WANG Hanchen1,2, WU Jiayin1,2, HUANG Biao1, LU Qilin1,2()   

  1. 1. College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
    2. Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China
  • Received:2022-12-13 Revised:2023-05-18 Published:2023-12-15 Online:2024-01-22

摘要:

针对水凝胶存在力学性能差、受损后性能难以恢复导致使用寿命短,以及有毒交联剂的使用带来生物相容性差的问题,以明胶(Gel)为基质,双醛纳米纤维素(DNCC)为增强相,通过动态亚胺键形成第一重交联网络,并引入单宁(Ta)和四硼酸钠(Borax)形成多重氢键和动态硼酸酯键,基于动态共价键和氢键协同制备了具有三重交联网络的生物相容性纳米纤维素自愈合Gel/DNCC/Borax/Ta水凝胶,并对其结构和性能进行表征。结果表明:Gel/DNCC/Borax/Ta水凝胶具有良好的热稳定性、柔韧性及可注射性,相比于Gel/DNCC水凝胶,其力学性能和胶体黏弹性明显提高,断裂强度从0.138 MPa增加到0.353 MPa,增加了155.7%,储能模量从960 Pa升高到1 550 Pa, 提升了61.4%;室温环境下,无需外界刺激,受损的水凝胶能够在1 h内快速愈合,愈合效率达到98%;经质量分数0.5%的明胶纤维素复合物浸提液处理72 h后,成纤维细胞凋亡率小于5%,表明Gel/DNCC/Borax/Ta水凝胶具有良好的生物相容性。

关键词: 智能材料, 明胶, 单宁, 四硼酸钠, 双醛纳米纤维素, 多重氢键, 自愈合水凝胶, 生物相容性

Abstract:

Objective Hydrogel materials have a wide range of promising applications in various fields such as drug delivery, tissue healing, and wearable electronic devices because of their soft texture and 3-D porous structure. However, the low durability and poor biocompatibility of traditional hydrogels have limited their practical applications. Therefore, a self-healing hydrogel with good biocompatibility and injectable capacity should be designed to provide novel perspectives to break the current technological bottleneck.
Method The self-healing property of hydrogels depends mainly on dynamic chemical bonding, which restores damaged chemical bonds and resumes the hydrogel to its original properties. Biocompatible nanocellulose self-healing hydrogels (Gel/DNCC/Borax/Ta) with triple crosslinking networks were prepared by reversible crosslinking the amino group in gelatin (Gel) and the aldehyde group in dual formaldehyde nanocellulose (DNCC) to form imine bonds as the first crosslinking network. Then tannin (Ta) and borax(Borax) were introduced into the hydrogels to form multiple hydrogen bonding network and dynamic borate ester bonding network.
Results The thermal stability of Gel/DNCC/Borax/Ta hydrogels was enhanced compared to gelatin, with the thermal decomposition temperature increasing from 277.3 ℃ to 301.0 ℃, and the maximum mass loss rate temperature increasing from 312.9 ℃ to 320.9 ℃. Compared with Gel/DNCC hydrogel, the mechanical properties and colloidal viscoelasticity of Gel/DNCC/Borax/Ta hydrogel were significantly enhanced, with the fracture strength increasing from 0.138 MPa to 0.353 MPa, representing an increase of 155.7%, and the compressive strength increasing from 0.686 MPa to 1.422 MPa, and the energy storage modulus increasing from 960 Pa to 1 550 Pa with an increase of 61.4%. The beneficial thermal and mechanical properties of Gel/DNCC/Borax/Ta hydrogels was due to the synergistic effect of multiple hydrogen bonds and dynamic covalent bonds in the hydrogels, forming a compact triple cross-linked network, thus enhancing their structural stability and improving their thermal stability. The human prosthetic hand model fitting experiments showed that Gel/DNCC/Borax/Ta hydrogel could follow body movement with good flexibility. Syringe injection experiments showed that Gel/DNCC/Borax/Ta hydrogels had good flowability and gelation ability. The cut hydrogel could heal itself and keep its original shape within 1 h at room temperature. The compressive strain of Gel/DNCC/Borax/Ta hydrogel before after healing was 0.519 and 0.509 mm/mm with a self-healing efficiency of 98%, respectively. This indicats the outstanding healing ability of Gel/DNCC/Borax/Ta hydrogel. The self-healing property of the hydrogel is derived from the dynamic borate ester and imine bonds that are re-formed and healed rapidly by their dynamic reversibility after being disrupted during the self-healing process. Detection of the proliferation of fibroblasts treated with various concentrations of gelatin cellulose complex extracts by the CCK8 method. The results showed that 0.5% of gelatin cellulose complex extracts had a well promotion effect on cell proliferation. Flow cytometry was used to measure fibroblast survival, and fibroblasts treated with an infusion containing 0.5% gelatin cellulose complex still had less than 5% apoptosis after 72 h. Cell staining assay showed that fibroblasts were able to survive normally in 0.5% of gelatin cellulose complex extracts.
Conclusion A self-healing hydrogel with good biocompatibility and injectability is developed to solve the problems of low durability and poor biocompatibility that existed in hydrogel materials, which obstructed their applications in wearable electronic devices, tissue healing, and drug delivery. The three-dimensional interpenetrating network structure endows the Gel/DNCC/Borax/Ta hydrogel with strong mechanical properties, thermal stability and good elasticity. The dynamic borate ester bonds and imine bonds give Gel/DNCC/Borax/Ta hydrogels a strong self-healing ability, enabling them to self-heal within 1 h after damage, with a self-healing efficiency of 98%. Since gelatin, a high molecular mass water-soluble protein mixture, can act as a cell culture substrate to promote cell proliferation, DNCC also possesses excellent biocompatibility, giving the Gel/DNCC/Borax/Ta hydrogel a high degree of biocompatibility. Favorable thermal stability, mechanical properties including injectability and flexibility, and biocompatibility give the hydrogel promising potential for use in biomedical and tissue engineering.

Key words: smart material, gelatin, tannin, borax, dual formaldehyde nanocellulose, multiple hydrogen bond, self-healing hydrogel, biocompatibility

中图分类号: 

  • TQ352

图1

Gel/DNCC/Borax/Ta水凝胶的制备流程图"

图2

纯明胶水凝胶和Gel/DNCC/Borax/Ta水凝胶的SEM照片"

图3

DNCC、明胶和Gel/DNCC水凝胶的红外光谱图"

图4

纯明胶水凝胶和Gel/DNCC/Borax/Ta水凝胶的热重分析曲线"

图5

水凝胶的力学性能曲线"

图6

Gel/DNCC/Borax/Ta水凝胶的宏观柔韧性测试照片"

图7

Gel/DNCC/Borax/Ta水凝胶可注射性测试照片"

图8

水凝胶的流变性能"

图9

Gel/DNCC/Borax/Ta水凝胶的宏观自愈合过程"

表1

自愈合对Gel/DNCC/Borax/Ta水凝胶性能的影响"

状态 压缩应变/
(mm·mm-1)
储能模
量/Pa
损耗模
量/Pa
愈合前 0.519 1 550 75
愈合后 0.509 1 250 200

图10

CCK8法检测细胞增殖情况"

图11

明胶/纤维素的流式细胞检测结果"

图12

明胶/纤维素的细胞染色检测结果"

[1] VLIERBERGHE S V, DUBRUEL P, SCHACHT E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review[J]. Biomacromolecules, 2011, 12(5): 1387-1408.
[2] CHENG B, YAN Y, QI J, et al. Cooperative assembly of a peptide gelator and silk fibroin afford an injectable hydrogel for tissue engineering[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12474-12484.
[3] LI Z, ZHANG S, CHEN Y, et al. Gelatin methacryloyl-based tactile sensors for medical wearables[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202003601.
[4] HOARE T R, KOHANE D S. Hydrogels in drug delivery: progress and challenges[J]. Polymer, 2008, 49(8): 1993-2007.
[5] LIU S, KANG M, LI K, et al. Polysaccharide-templated preparation of mechanically-tough, conductive and self-healing hydrogels[J]. Chemical Engineering Journal, 2018, 334: 2222-2230.
[6] ZHANG Y, TAO L, LI S, et al. Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules[J]. Biomacromolecules, 2011, 12(8): 2894-2901.
[7] WEI Z, YANG J H, LIU Z Q, et al. Novel biocompatible polysaccharide-based self-healing hydrogel[J]. Advanced Functional Materials, 2015, 25(9): 1352-1359.
[8] LI Q, LIU C, WEN J, et al. The design, mechanism and biomedical application of self-healing hydrogels[J]. Chinese Chemical Letters, 2017, 28(9): 1857-1874.
[9] KANG H W, TABATA Y, IKADA Y. Fabrication of porous gelatin scaffolds for tissue engineering[J]. Biomaterials, 1999, 20(14): 1339-1344.
[10] ALI E, SULTANA S, HAMID S B A, et al. Gelatin controversies in food, pharmaceuticals, and personal care products: authentication methods, current status, and future challenges[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(9): 1495-1511.
[11] LIU D, NIKOO M, BORAN G, et al. Collagen and gelatin[J]. Annual Review of Food Science and Technology, 2015, 6: 527-557.
[12] KLEMM D, CRANSTON E D, FISCHER D, et al. Nanocellulose as a natural source for groundbreaking applications in materials science: today's state[J]. Materials Today, 2018, 21(7): 720-748.
[13] HABIBI Y. Key advances in the chemical modification of nanocelluloses[J]. Chemical Society Reviews, 2014, 43(5): 1519-1542.
[14] YI X, HE J, WANG X, et al. Tunable mechanical, antibacterial, and cytocompatible hydrogels based on a functionalized dual network of metal coordination bonds and covalent crosslinking[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6190-6198.
[15] MÜNSTER L, VÍCHA J, KLOFÁČ J, et al. Stability and aging of solubilized dialdehyde cellulose[J]. Cellulose, 2017, 24(7): 2753-2766.
[16] LEE H, YOU J, JIN H J, et al. Chemical and physical reinforcement behavior of dialdehyde nanocellulose in PVA composite film: a comparison of nanofiber and nanocrystal[J]. Carbohydrate Polymers, 2020. DOI:10.1016/j.carbpol.2019.115771.
[17] LEI J, LI X, WANG S, et al. Facile fabrication of biocompatible gelatin-based self-healing hydrogels[J]. ACS Applied Polymer Materials, 2019, 1(6): 1350-1358.
[18] PEÑA C, CABA K D L, ECEIZA A, et al. Enhancing water repellence and mechanical properties of gelatin films by tannin addition[J]. Bioresource Technology, 2010, 101(17): 6836-6842.
[19] GOFF K J L, GAILLARD C, HELBERT W, et al. Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers[J]. Carbohydrate Polymers, 2015, 116: 117-123.
[20] SHAO C, WANG M, CHANG H, et al. A self-healing cellulose nanocrystal-poly (ethylene glycol) nanocomposite hydrogel via Diels-Alder click reaction[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6167-6174.
[21] FELIX G, REGENASS M, BOLLER T. Sensing of osmotic pressure changes in tomato cells[J]. Plant Physiology, 2000, 124(3): 1169-1180.
[22] GUAN S, ZHANG K, CUI L, et al. Injectable gelatin/oxidized dextran hydrogel loaded with apocynin for skin tissue regeneration[J]. Materials Science and Engineering: C, 2021. DOI:10.1016/j.msec.2021.112604.
[1] 魏建斐, 马国聪, 张安莹, 吴雨航, 崔晓晴, 王锐. 明胶基碳点的热解法制备及其阻燃与防伪应用[J]. 纺织学报, 2023, 44(12): 106-114.
[2] 李艾元, 施心雨, 岳万福, 游卫云. 丝素蛋白水凝胶支架的制备及其性能[J]. 纺织学报, 2022, 43(06): 44-48.
[3] 王茜, 乔燕莎, 王君硕, 李彦, 王璐. 金属酚醛/两性离子聚合物涂层聚丙烯补片的制备及其抗蛋白吸附性能[J]. 纺织学报, 2022, 43(06): 9-14.
[4] 朱小威, 韦天琛, 李亦江, 邢铁玲, 陈国强. 聚苯乙烯/铁-单宁酸配合物微球在棉织物上的结构生色[J]. 纺织学报, 2022, 43(05): 32-37.
[5] 吴嘉茵, 王汉琛, 黄彪, 卢麒麟. 氯离子响应性纳米纤维素荧光水凝胶的构筑[J]. 纺织学报, 2022, 43(02): 44-52.
[6] 姜雨淋, 王卉, 张克勤. 生物3D打印用丝素蛋白基凝胶墨水的研究进展[J]. 纺织学报, 2021, 42(11): 1-8.
[7] 李枫, 杨嘉豪, 赖耿昌, 王建南, 许建梅. 高分子聚合物栓塞微球的研究进展[J]. 纺织学报, 2021, 42(10): 180-189.
[8] 杨雯静, 武海良, 马建华, 姚一军, 沈艳琴. 毛纱上浆用丁二酸酐酰化明胶浆料的制备及其性能[J]. 纺织学报, 2021, 42(04): 93-100.
[9] 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59.
[10] 王曙东, 马倩, 王可, 瞿才新, 戚玉. 蚕丝蛋白/明胶复合水凝胶的结构与生物相容性[J]. 纺织学报, 2020, 41(11): 41-47.
[11] 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19.
[12] 董科, 李思明, 吴官正, 黄虹蓉, 林钟石, 肖学良. 碳纤维/涤纶刺绣心电电极制备及其性能[J]. 纺织学报, 2020, 41(01): 56-62.
[13] 林永佳, 杨董超, 张佩华, 顾岩. 再生丝素蛋白/脱细胞真皮基质共混纳米纤维膜的制备及其性能[J]. 纺织学报, 2019, 40(07): 13-18.
[14] 王利君 熊杰 骆菁菁 赵兴艳 赵新飞. 聚乳酸-聚己内酯/丝素蛋白三元复合纳米纤维膜支架的结构与性能[J]. 纺织学报, 2017, 38(05): 8-13.
[15] 何肖 马明波 鲁庚 胡志华 周文龙. 薯莨水溶提取组分的初步分析[J]. 纺织学报, 2015, 36(05): 63-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!