纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 35-42.doi: 10.13475/j.fzxb.20220702801
SHI Hongyu1(), WEI Yingjie1, GUAN Shengqi2, LI Yi1
摘要:
针对棉花中异性纤维检测精度低、异性纤维隐藏或边角位置不易识别等原因导致检测效果不佳的问题,提出一种基于残差结构的棉花异性纤维检测算法。首先,针对异性纤维检测目标,提出一种棉花异性纤维在线检测方案;其次,针对异性纤维颜色、纹理、位置等特征,构建深浅层混合数据集;在此基础上设计了残差结构的异性纤维检测网络模型算法,解决了现有检测算法精度低、异性纤维隐藏或边角位置的问题;最后,将该算法与传统经典算法对比实验。结果表明:在深浅层混合数据集下,与经典算法对比,该算法具有较高的准确性和实时性,其平均检测准确率达到88.48%,1张图像的检测速度为0.019 s,满足工业现场实时检测需求,为棉花中异性纤维检测提供了一种新方法。
中图分类号:
[1] | 汪文忠. 浅谈棉花异性纤维含量检验技术[J]. 中国棉花加工, 2019(3): 24-25. |
WANG Wenzhong. Talking about the testing technology of cotton foreign fiber fontent[J]. China Cotton Processing, 2019(3): 24-25. | |
[2] | 陈亚军, 吴婷荣, 史书伟, 等. 基于光学成像的棉花异性纤维检测方法研究进展[J]. 激光与光电子学进展, 2021, 58(16):138-154. |
CHEN Yajun, WU Tingrong, SHI Shuwei, et al. Review of cotton foreign fiber detection method using optical imaging[J]. Laser & Optoelectronics Progress, 2021, 58(16): 138-154. | |
[3] | 任维佳, 杜玉红, 左恒力, 等. 棉花中异性纤维检测图像分割和边缘检测方法研究进展[J]. 纺织学报, 2021, 42(12): 196-204. |
REN Weijia, DU Yuhong, ZUO Hengli, et al. Research progress in image segmentation and edge detection methods for alien fibers detection in cotton[J]. Journal of Textile Research, 2021, 42(12): 196-204. | |
[4] | WANG Y, HAO Z, ZUO F, et al. A fabric defect detection system based omproved YOLOv5 detector[C]// Journal of Physics: Conference Series. Lanzhou: IOP Publishing, 2021. DOI: 10.1088/1742-6596/2010/1/012191. |
[5] | 杜玉红, 董超群, 赵地, 等. 改进Faster RCNN模型在棉花异性纤维识别中的应用[J]. 激光与光电子学进展, 2020, 57(12): 132-141. |
DU Yuhong, DONG Chaoqun, ZHAO Di, et al. Application of improved faster RCNN model for foreign fiber identification in cotton[J]. Laser & Optoelectronics Progress, 2020, 57(12): 132-141. | |
[6] | 巫明秀, 吴谨, 张晨, 等. 基于改进YOLOv3的棉花异性纤维检测[J]. 液晶与显示, 2020, 35(11): 1195-1203. |
WU Mingxiu, WU Jin, ZHANG Chen, et al. Detection of foreign fiber in cotton based on improved YOLOv3[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(11): 1195-1203. | |
[7] | ZHAO Xuehua, GUO Xiangyun, LUO Jie. et al. Efficient detection method for foreign fibers in cotton[J]. Information Processing in Agriculture, 2018, 5(3): 320-328. |
[8] | 赵学华, 李道亮, 杨文柱, 等. 基于改进蚁群算法的棉花异性纤维目标特征选择方法[J]. 农业机械学报, 2011, 41(4): 173-178. |
ZHAO Xuehua, LI Daoliang, YANG Wenzhu, et al. Feature selection for cotton foreign fiber objects based on improved ant colony algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 41(4): 173-178. | |
[9] | 张云, 许江淳, 王志伟, 等. 基于机器视觉的棉花异性纤维检测技术优化研究[J]. 中国农机化学报, 2018, 39(9): 61-65. |
ZHANG Yun, XU Jiangchun, WANG Zhiwei, et al. Optimization of cotton heterosexual detection technology based on machine vision[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(9): 61-65. | |
[10] | 戴永成, 焦智. 基于DSP的棉花异性纤维实时分拣算法研究与实现[J]. 科技通报, 2017, 33(5): 203-207. |
DAI Yongcheng, JIAO Zhi. Research and implementation of cotton foreign fiber real-time sorting algorithm based on DSP[J]. Bulletin of Science and Technology, 2017, 33(5): 203-207. | |
[11] | 何晓昀, 韦平, 张林, 等. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(6): 131-135. |
HE Xiaoyun, WEI Ping, ZHANG Lin, et al. Detection method of foreign fibers in seed cotton based on deep-learning[J]. Journal of Textile Research, 2018, 39(6):131-135. | |
[12] | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1800-1807. |
[13] | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9. |
[14] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2016: 770-778. |
[15] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the European Conference on Computer Vision. Seoul: ECCV, 2018: 3-19. |
[16] | SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City: IEEE, 2018: 4510-4520. |
[17] | TAN M, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]// Proceedings of International Conference on Machine Learning. Vancouver: PMLR, 2019: 6105-6114. |
[1] | 马创佳, 齐立哲, 高晓飞, 王子恒, 孙云权. 基于改进YOLOv4-Tiny的缝纫线迹质量检测方法[J]. 纺织学报, 2023, 44(08): 181-188. |
[2] | 付晗, 胡峰, 龚杰, 余联庆. 面向织物疵点检测的缺陷重构方法[J]. 纺织学报, 2023, 44(07): 103-109. |
[3] | 袁甜甜, 王鑫, 罗炜豪, 梅琛楠, 韦京艳, 钟跃崎. 基于注意力机制和视觉转换器的三维虚拟试衣网络[J]. 纺织学报, 2023, 44(07): 192-198. |
[4] | 李学良, 杜玉红, 任维佳, 左恒力. 基于近红外光谱和残差神经网络的异性纤维分类识别[J]. 纺织学报, 2023, 44(05): 84-92. |
[5] | 陈佳, 杨聪聪, 刘军平, 何儒汉, 梁金星. 手绘草图到服装图像的跨域生成[J]. 纺织学报, 2023, 44(01): 171-178. |
[6] | 顾梅花, 刘杰, 李立瑶, 崔琳. 结合特征学习与注意力机制的服装图像分割[J]. 纺织学报, 2022, 43(11): 163-171. |
[7] | 吴帆, 李勇, 陈晓川, 汪军, 徐敏俊. 基于三维编织模型的棉纤维集合体压缩过程有限元建模与仿真[J]. 纺织学报, 2022, 43(09): 89-94. |
[8] | 任艳博, 蒋超, 王教庆, 俞琳, 王园园. 基于聚类算法和色彩网络的蝴蝶色彩分析及应用[J]. 纺织学报, 2021, 42(05): 103-108. |
[9] | 董超群, 杜玉红, 任维佳, 赵地. 应用光学成像技术检测棉花中异性纤维的研究进展[J]. 纺织学报, 2020, 41(06): 183-189. |
[10] | 刘建勇 黄烨 谭学强. 色纺纱的计算机配色研究进展[J]. 纺织学报, 2018, 39(11): 176-184. |
[11] | 陈晓妮 汪军 陈庆东. 棉花检测能力认证活动中统计模型的应用[J]. 纺织学报, 2012, 33(10): 33-36. |
[12] | 张立杰 寇纪淞 李敏强 彭利. 基于协整理论的棉花价格与纺织生产相关性[J]. 纺织学报, 2012, 33(10): 147-152. |
[13] | 叶炜. 基于多波段传感器技术的新型棉花色泽仪研制[J]. 纺织学报, 2010, 31(4): 113-116. |
[14] | 徐红;夏鑫. 机采棉与手采棉的性能比较[J]. 纺织学报, 2009, 30(9): 5-10. |
[15] | 唐虹.;张渭源. 基于面料性能的半紧身裙造型特征及预测模型[J]. 纺织学报, 2008, 29(6): 88-91. |
|