纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 50-57.doi: 10.13475/j

• 纺织工程 • 上一篇    下一篇

芯丝种类与纺纱速度对喷气涡流纺包芯纱性能的影响

缪璐璐1, 董正梅1,2, 朱繁强1, 荣慧3, 何林伟4, 郑国全4, 邹专勇1()   

  1. 1.绍兴文理学院 浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
    2.中纺院(浙江)技术研究院有限公司, 浙江 绍兴 312000
    3.百隆东方股份有限公司, 浙江 宁波 315206
    4.绍兴国周纺织新材料有限公司, 浙江 绍兴 312000
  • 收稿日期:2022-09-13 修回日期:2022-11-24 出版日期:2023-12-15 发布日期:2024-01-22
  • 通讯作者: 邹专勇(1983—),男,教授,博士。主要研究方向为新型纺纱加工理论与应用研究。E-mail:zouzhy@usx.edu.cn
  • 作者简介:缪璐璐(1998—),女,硕士生。主要研究方向为纺织材料与纺织品设计。
  • 基金资助:
    国家级大学生创新创业训练计划项目(202110349024);绍兴文理学院研究生科研课题项目(Y20210701);绍兴文理学院国际合作项目(2019LGGH1001)

Influence of core filament type and delivery speed on performance of air-jet vortex spun core-spun yarns

MIAO Lulu1, DONG Zhengmei1,2, ZHU Fanqiang1, RONG Hui3, HE Linwei4, ZHENG Guoquan4, ZOU Zhuanyong1()   

  1. 1. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. China Textile Institute (Zhejiang) Technology Research Institute Co., Ltd., Shaoxing, Zhejiang 312000, China
    3. BROS Oriental Co., Ltd., Ningbo, Zhejiang 315206, China
    4. Shaoxing Guozhou Textile New Material Co., Ltd., Shaoxing, Zhejiang 312000, China
  • Received:2022-09-13 Revised:2022-11-24 Published:2023-12-15 Online:2024-01-22

摘要:

为制备结构性能优良的喷气涡流纺包芯纱,以粘胶短纤维作为外包纤维,不同种类聚酯长丝(涤纶拉伸变形丝(DTY)、涤纶全拉伸丝(FDY)和聚对苯二甲酸丁二酯纤维长丝(PBT))为芯丝制备喷气涡流纺包芯纱。比较分析了不同种类芯丝喷气涡流纺包芯纱与纯粘胶喷气涡流纱的性能差别,并采用双因素方差分析法探究了芯丝种类与纺纱速度对包芯纱强伸性、条干CV值和毛羽H值的影响情况。研究结果表明:相较于不含芯丝的喷气涡流纺纱线,包芯纱的力学性能明显提升,毛羽H值有所降低;芯丝种类是影响喷气涡流纺包芯纱性能的主要因素,对断裂强度、断裂伸长率和毛羽H值影响极为显著,以DTY为芯丝的包芯纱断裂强度最大,以PBT为芯丝的包芯纱断裂伸长率最大,以FDY为芯丝的包芯纱毛羽H值最低;纺纱速度仅对毛羽H值有显著性影响,3种包芯纱的毛羽H值都随纺纱速度的增大而增大,其中PBT包芯纱毛羽H值增长速率最快。

关键词: 喷气涡流纺, 包芯纱, 纺纱速度, 聚酯长丝, 纱线性能

Abstract:

Objective In order to optimize the structure and performance of core-spun yarns made by air-jet vortex spinning, the paper reports on the effects of core filament types and delivery speed on yarn properties, so as to better predict yarn properties and guide the product development of core-spun yarns based on air-jet vortex spinning.
Method The core-spun yarns were prepared using viscose staple fiber as the sheath and different polyester filaments, including polyester draw textured yarn (DTY), polyester full draw yarn (FDY), and polybutylene terephthalate filament yarn (PBT), as the core filament. Through studying the yarn performance test and scanning electron microscope (SEM) images, the differences between different types of core-spun yarns and pure viscose yarns made by Murata vortex spinning were compared and analyzed, and the effects of core filament types and delivery speed on the core-spun yarn tenacity and elongation, evenness CV value and hairiness H value were investigated using two-factor ANOVA.
Results Due to the existence of core filaments, the mechanical properties of the air-jet vortex spun core-spun yarns are significantly improved than that of staple yarns (Tab. 3). The ANOVA results showed that the type of core filaments were the main factor affecting the performance of core-spun yarns and had a significant effect on breaking strength, elongation and hairiness H value; In the considered range, the delivery speed only had a significant effect on the yarn hairiness H value, but had no significant effect on the yarn strength, elongation and evenness. The interaction of filament types and delivery speed had a significant effect on the breaking strength of core-spun yarns (Tab. 4-7). At any delivery speed, the core-spun yarns containing DTY filaments had the highest breaking strength. Although the strength of PBT filament was second only to DTY filament (Tab. 1), the breaking strength of PBT core-spun yarn was the lowest among the three core-spun yarns. The reason is that the excessive difference in elongation at break between filaments and staple fibers. And the breaking strength of PBT core-spun yarn increased with the increase of delivery speed (Fig. 2). At lower spinning speeds, the increased twist of the staple fibers leads to a decrease in their stretchable distance along the yarn axis, which further exacerbates the different simultaneity of filament and staple fiber breakage, with multiple breakage peaks appearing on the stretch curve (Fig. 3).The elongation at break of PBT core-spun yarn was the largest, followed by DTY and FDY core-spun yarn (Fig. 4). Core-spun yarns with elastic filaments are more easier to adapt to the change in the core-sheath structure and adjust in time during stretching, resulting in higher elongation at break. The evenness CV value of the PBT core-spun yarns were most affected by the delivery speed, while the FDY core-spun yarns were less affected by the delivery speed. This because elastic filaments are more easily deformed in the spinning process. The low delivery speeds contribute to short fiber twisting and improve the yarn evenness. However, for PBT or DTY core-spun yarns, low delivery speeds also increase the probability of deformation of elastic filaments, and bring the risk of yarn evenness deterioration. In order to obtain a better yarn evenness, PBT or DTY core-spun yarns should processed at 380 m/min (Fig. 5). The three types of core-spun yarns were not very different in terms of hairiness H value, and hairiness H value increased with increasing delivery speed (Fig. 6). Because the twisting and wrapping effect of the airflow on the free end of the fiber is weakened during high-speed spinning, the amount of fluffy hairiness of the yarn increases.
Conclusion The tenacity and elongation of air-jet vortex core-spun yarns are obviously affected by the mechanical properties of the core filament. In order to obtain high strength yarns, DTY filament with good strength can be selected as the core, and PBT filament with good elasticity can be selected to improve the elongation at break. However, due to the large difference in the elongation at break between PBT filament and viscose staple fiber, the yarn breaking strength is low when there is a difference in breakage between the sheath and core fibers. Therefore, the breaking strength of PBT core-spun yarn can be enhanced by increasing the delivery speed to improve the simultaneity of fibers breakage. The effect of delivery speed on yarn evenness is also related to the elasticity of the core filament, the lower the speed, the more intense the filament is affected by the high-speed rotating airflow, and the greater the deformation of the elastic filament, resulting in a more negative impact on the core-spun yarn evenness. But for FDY core-spun yarn, the effect of high-speed rotating airflow on staple fiber wrapping is more prominent, so low speed helps to reduce the yarn's evenness CV value. In addition, the lower delivery speed allows the staple fibers to be fully twisted, constraining the yarn body to become tighter, and also helps to improve yarn hairiness.

Key words: air-jet vortex spinning, core-spun yarn, delivery speed, polyester filament, yarn property

中图分类号: 

  • TS101.2

表1

纤维原料规格参数与性能"

原料种类 原料规格 断裂强度/
(cN·dtex-1)
断裂伸
长率/%
弹性模量/
(cN·dtex-1)
粘胶短纤维 1.44 dtex
(38 mm)
1.91 18.09 41.75
DTY长丝 55.5 dtex(36 f) 3.93 16.68 16.01
FDY长丝 55.5 dtex(36 f) 3.24 14.69 31.20
PBT长丝 55.5 dtex(36 f) 3.82 35.78 3.49

表2

23.62 tex喷气涡流纺样品纱制备方案"

纱线
编号
芯丝
种类
纺纱速度/
(m·min-1)
纱线
编号
芯丝
种类
纺纱速度/
(m·min-1)
1 无芯丝 380 6 FDY 380
2 DTY 350 7 FDY 410
3 DTY 380 8 PBT 350
4 DTY 410 9 PBT 380
5 FDY 350 10 PBT 410

表3

纯粘胶纱与不同种类芯丝包芯纱的性能比较"

纱线
编号
断裂强度/
(cN·tex-1)
断裂伸长
率/%
条干
CV值/%
毛羽
H
1 13.26 11.5 10.43 3.73
3 18.88 13.97 12.12 3.60
6 17.13 11.77 11.75 3.28
9 14.54 14.59 10.12 3.64

图1

纯粘胶纱与不同种类芯丝包芯纱的SEM照片(×60)"

表4

包芯纱断裂强度的方差分析表"

方差
来源
平方和 自由度 均方差 F统计量 P 显著
A 8.093 2 40.047 382.572 0.000 ***
B 0.676 2 0.338 3.231 0.063 *
A×B 3.990 4 0.998 9.530 0.000 ***
误差 1.884 18 0.105
总和 86.643 26

表5

包芯纱断裂伸长率的方差分析表"

方差
来源
平方和 自由度 均方差 F统计量 P 显著
A 27.992 2 13.996 93.577 0.000 ***
B 0.073 2 0.036 0.243 0.787
A×B 0.648 4 0.162 1.082 0.395
误差 2.692 18 0.150
总和 31.405 26

表6

包芯纱条干CV值的方差分析表"

方差
来源
平方和 自由度 均方差 F统计量 p 显著
A 2.952 2 1.476 0.851 0.443
B 9.933 2 4.966 2.864 0.083 *
A×B 10.810 4 2.703 1.559 0.228
误差 31.210 18 1.734
总和 54.905 26

表7

包芯纱毛羽H值的方差分析表"

方差来
平方和 自由度 均方差 F统计量 P 显著
A 0.904 2 0.452 33.315 0.000 ***
B 0.639 2 0.319 23.548 0.000 ***
A×B 0.055 4 0.014 1.012 0.427
误差 0.244 18 0.014
总和 1.842 26

图2

不同纺纱速度下不同种类芯丝包芯纱断裂强度比较"

图3

不同纺纱速度下粘胶/PBT包芯纱的拉伸曲线"

图4

不同纺纱速度下不同种类芯丝包芯纱断裂伸长率比较"

图5

不同纺纱速度下不同种类芯丝包芯纱条干CV值比较"

图6

不同纺纱速度下不同种类芯丝包芯纱毛羽H值比较"

[1] 倪俊瑶, 李煜斌, 范杰, 等. 含涤纶长丝包芯纱织物的折痕回复性能[J]. 毛纺科技, 2021, 49(7):1-6.
NI Junyao, LI Yubin, FAN Jie, et al. Crease recovery performance of fabric with polyester filament corespun yarn[J]. Wool Textile Journal, 2021, 49(7):1-6.
[2] BEGUM H A, KHAN M K R, RAHMAN M M. An overview on spinning mechanism, yarn structure and advantageous characteristics of vortex spun yarn and fabric[J]. Advances in Applied Sciences, 2018, 3(5): 58-64.
[3] ORTLEK H G, ULKU S. Effects of spandex and yarn counts on the properties of elastic core-spun yarns produced on Murata vortex spinner[J]. Textile Research Journal, 2007, 77(6): 432-436.
[4] 刘艳斌, 刘俊芳, 宋海玲. 喷气涡流纺涤纶包芯纱的开发[J]. 棉纺织技术, 2012, 40(6): 46-48.
LIU Yanbin, LIU Junfang, SONG Hailing. Development of air-jet vortex spinning polyester core-spun yarn[J]. Cotton Textile Technology, 2012, 40(6): 46-48.
[5] 张岩, 裴泽光, 陈革. 喷气涡流纺金属丝包芯纱的制备及其结构与性能[J]. 纺织学报, 2018, 39(5): 25-31.
ZHANG Yan, PEI Zeguang, CHEN Ge. Fabrication, structure and properties of vortex core-spun yarn containing metal wire[J]. Journal of Textile Research, 2018, 39(5): 25-31.
[6] PEI Z, WANG X, LI Z, et al. Effect of process and nozzle structural parameters on the wrapping quality of core-spun yarns produced on a modified vortex spinning system[J]. Textile Research Journal, 2021, 91(15/16): 1841-1856.
[7] PEI Z, ZAHNG Y, CHEN G. A core-spun yarn containing a metal wire manufactured by a modified vortex spinning system[J]. Textile Research Journal, 2019, 89(1): 113-118.
[8] 邹专勇, 缪璐璐, 董正梅, 等. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(8): 27-33.
ZOU Zhuanyong, MIAO Lulu, DONG Zhengmei, et al. Effect of air-jet vortex spinning process on properties of viscose/polyester core-spun yarns[J]. Journal of Textile Research, 2022, 43(8): 27-33.
[9] 樊理山, 来侃, 孙润军, 等. 三组分复合纱线的拉伸断裂特征与力学模型[J]. 纺织学报, 2010, 31(3): 36-39.
FAN Lishan, LAI Kan, SUN Runjun, et al. Tensile strength of tri-component composite yarn and its mechanical model[J]. Journal of Textile Research, 2010, 31(3): 36-39.
[10] 张赛, 张梅, 窦梅冉, 等. 有机棉暖姜纤维金黄连纤维喷气涡流纱的生产[J]. 棉纺织技术, 2021, 49(10): 55-58.
ZHANG Sai, ZHANG Mei, DOU Meiran, et al. Production of organic cotton warm ginger fiber Jinhuanglian fiber air jet vortex yarn[J]. Cotton Textile Technology, 2021, 49(10): 55-58.
[11] 刘杰. 棉/PBT长丝包芯纱工艺研究及牛仔面料开发[D]. 上海: 东华大学, 2016:1-4.
LIU Jie. Cotton/PBT filament core-spun yarn technology research and development of denim fabric[D]. Shanghai: Donghua University, 2016: 1-4.
[12] 李丹丹, 权利军, 金肖克, 等. 氨纶与双组分复合长丝/棉包芯纱的拉伸弹性[J]. 纺织学报, 2017, 38(5): 31-36.
LI Dandan, QUAN Lijun, JIN Xiaoke, et al. Tensile elasticity of spandex and bi-component filament/cotton core-spun yarn[J]. Journal of Textile Research, 2017, 38(5): 31-36.
[1] 贾冰凡, 敖利民, 唐雯, 郑元生, 尚珊珊. 毛纱/锦纶长丝包覆纱的纺制及其性能与应用[J]. 纺织学报, 2023, 44(12): 58-66.
[2] 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
[3] 贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光, 李时伟. 基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能[J]. 纺织学报, 2023, 44(10): 113-119.
[4] 张华, 刘帅, 杨瑞华. 长丝包覆复合包芯纱拉伸性能建模研究[J]. 纺织学报, 2023, 44(08): 57-62.
[5] 王开, 王瑾, 牛丽, 陈超余, 马丕波. 棉/不锈钢丝包芯纱针织电路制备及其导电稳定性能[J]. 纺织学报, 2023, 44(07): 64-71.
[6] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
[7] 付驰宇, 徐傲, 齐硕, 王凯, 缪莹, 尚路路, 夏治刚. 形状记忆合金复合纱线及其面料驱动性能[J]. 纺织学报, 2023, 44(06): 91-97.
[8] 史晶晶, 杨恩龙. 赛络纺棉/毛段彩纱结构及其性能[J]. 纺织学报, 2023, 44(03): 55-59.
[9] 吴俊雄, 尉霞, 罗璟娴, 闫姣儒, 吴磊. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(03): 60-66.
[10] 缪莹, 熊诗嫚, 郑敏博, 唐建东, 张慧霞, 丁彩玲, 夏治刚. 高光洁处理对聚酰亚胺短纤纱及其织物性能的影响[J]. 纺织学报, 2023, 44(02): 118-127.
[11] 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33.
[12] 李龙, 吴磊, 林思伶. 捻度对棉/氨纶/银丝包芯纱性能的影响[J]. 纺织学报, 2023, 44(01): 100-105.
[13] 邹专勇, 缪璐璐, 董正梅, 郑国全, 付娜. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(08): 27-33.
[14] 吴佳庆, 王迎, 郝新敏, 宫玉梅, 郭亚飞. 长丝喂入位置对赛络纺包芯纱结构与性能影响[J]. 纺织学报, 2021, 42(08): 64-70.
[15] 杨瑞华, 潘博, 郭霞, 王利军, 李健伟. 环锭纺及转杯纺和喷气涡流纺混色纱的纤维混合效果研究[J]. 纺织学报, 2021, 42(07): 76-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!