纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 194-202.doi: 10.13475/j.fzxb.20220706101
陆伟健1, 屠佳佳1,2, 王俊茹1, 韩思捷1, 史伟民1()
LU Weijian1, TU Jiajia1,2, WANG Junru1, HAN Sijie1, SHI Weimin1()
摘要:
针对纺织车间背景复杂、纱筒种类多导致利用传统机器视觉识别空纱筒准确率低、模型参数量大的问题,设计了一种基于改进残差网络的空纱筒识别模型。该模型借鉴ResNet系列的模型结构,进行卷积核轻量化,改进经典的残差模块并加入SENet注意力机制,以达到提高检测空纱筒的准确率,减少模型参数的目的。最后通过数据增强,创建了适合工厂实际生产的纱筒数据集。实验结果表明:在消融实验中,应用SENet注意力机制可以提高3.86%的准确率,利用优化残差模块不仅减少了650%的模型参数还提高了1.22%的准确率。在原数据集的验证集上,改进模型的准确率为99.6%比ResNet-18模型高4.46%,与VGG-16和AlexNet相比提高了7.05%~9.41%。在增强的数据集上,识别模型的准确率都有了较大的提升,但改进模型的准确率变化不大,说明该模型的鲁棒性较好,不易受到样本不足的影响。改进模型的参数数量缩小到原模型参数数量的1/10左右,为嵌入式设备部署空纱筒识别模型提供了思路。
中图分类号:
[1] | 阮建青, 赵吕航, 赵祚翔, 等. 成本上升对中国劳动密集型产业的影响:基于宁波纺织服装产业集群的研究[J]. 浙江大学学报(人文社会科学版), 2021, 51 (6):119-133. |
RUAN Jianqing, ZHAO Lvhang, ZHAO Zuoxiang, et al. The impact of rising costs on China's labor-intensive industries: a study based on Ningbo's textile and garment industry cluster[J]. Journal of Zhejiang University Science(Humanities and Social Edition), 2021, 51(6):119-133. | |
[2] | 张文昌, 单忠德, 卢影. 基于机器视觉的纱笼纱杆快速定位方法[J]. 纺报学报, 2020, 41(12):137-143. |
ZHANG Wenchang, SHAN Zhongde, LU Ying. Rapid positioning method of sarong yarn rod based on machine vision[J]. Journal of Textile Research, 2020, 41(12): 137-143. | |
[3] | 任慧娟, 金守峰, 顾金芋. 基于颜色特征的筒纱分拣机器人识别定位方法[J]. 轻工机械, 2020, 38(4):58-63. |
REN Huijuan, JIN Shoufeng, GU Jinqian. Identification and positioning method of twig sorting robot based on color characteristics[J]. Light Industrial Machinery, 2020, 38(4):58-63. | |
[4] | 王倪奕棋, 管声启, 管宇灿, 等. 基于改进的SSD深度学习算法的双目视觉纱筒识别定位[J]. 纺织高校基础科学学报, 2021, 34(2):59-66. |
WANG Niyiqi, GUAN Shengqi, GUAN Yucan, et al. Binocular vision spindle recognition and positioning based on improved SSD deeplearning algorithm[J]. Journal of Basic Science of Textile Universities, 2021, 34(2):59-66. | |
[5] | SHI Zhiwei, SHI Weimin, WANG Junru. The detection of thread roll's margin based on computer vision[J]. Sensors, 2021.DOI:10.3390/s21196331. |
[6] | 陈峥, 毕晓君. 基于轻量级神经网络的单幅图像去雨滴模型[J]. 哈尔滨工程大学学报, 2023, 44(2):292-299. |
CHEN Zheng, BI Xiaojun. Single-image raindrop model based on lightweight neural network[J]. Journal of Harbin Engineering University, 2023, 44(2):292-299. | |
[7] | HOWARD A G, ZHU M, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[DB/OL].(2017-04-17).arXiv:1704.04861v1. https://doi.org/10.48550/arXiv.1704.04861. |
[8] | HOWARD A G, SANDLER M, CHU G, et al. Searching for mobilenetv3[C] // Proceedings of 2019 IEEE/ CVF International Conference on Computer Vision ( ICCV ). Seoul: IEEE, 2019: 1314-1324. |
[9] | XIE Saining, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 5987-5995. |
[10] | HE K M, ZHANG X Y, REN S Q, et al. Deep residuallearning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. LasVegas: IEEE, 2016: 770-778. |
[11] | 张倩, 杨颖, 刘刚, 等. 融合数据增强与改进ResNet34的奶牛热红外图像乳腺炎检测[J]. 光谱学与光谱分析, 2023, 43(1):280-288. |
ZHANG Qian, YANG Ying, LIU Gang, et al. Thermal infrared image mastitis detection in dairy cows with ResNet34 enhanced and improved by ResNet34[J]. Spectroscopy and Spectral Analysis, 2023, 43(1):280-288. | |
[12] | 周啸辉, 余磊, 何茜, 等. 基于改进ResNet-18的红外图像人体行为识别方法研究[J]. 激光与红外, 2021, 51(9):1178-1184. |
ZHOU Xiaohui, YU Lei, HE Qian, et al. Research on human behavior recognition in infrared image based on improved ResNet-18[J]. Laser and Infrared, 2021, 51(9): 1178-1184. | |
[13] | AHN N, KANG B, SOHN K A. Fast, accurate, and light weight super-resolution with cascading residual network[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 256-272. |
[14] | GUO Yunhui, LI Yandong, WANG Liqiang, et al. Depthwise convolution is all you need for learning multiple visual domains[J]. Proceedings of the AAAI Conference on Artificial Intelligence. Hawaill: AAAI, 2019: 8368-8375. |
[15] | HU Jie, SHEN Li, SUN Gang, et al. Squeeze-and-excitation networks[C]// Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018:7132-7141. |
[16] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
doi: 10.1145/3065386 |
[17] | KAREN Simonyan, ANDREW Zisserman. Very deep convolutional networks for large-scale image recogn-ition[J]. ArXiv, 2014. DOI: 10.48550/ARVIV.1409.1556. |
[1] | 池盼盼, 梅琛楠, 王焰, 肖红, 钟跃崎. 基于边缘填充的单兵迷彩伪装小目标检测[J]. 纺织学报, 2024, 45(01): 112-119. |
[2] | 黄玥玥, 陈晓, 王海燕, 姚海洋. 基于ClothResNet模型的人体衣物颜色识别[J]. 纺织学报, 2023, 44(10): 143-148. |
[3] | 高艺华, 钱付平, 王晓维, 汪虎明, 高杰, 陆彪, 韩云龙. 纺织车间定向均流送风口结构设计及其送风性能[J]. 纺织学报, 2023, 44(08): 189-196. |
[4] | 杨宏脉, 张效栋, 闫宁, 朱琳琳, 李娜娜. 一种高鲁棒性经编机上断纱在线检测算法[J]. 纺织学报, 2023, 44(05): 139-146. |
[5] | 顾冰菲, 张健, 徐凯忆, 赵崧灵, 叶凡, 侯珏. 复杂背景下人体轮廓及其参数提取[J]. 纺织学报, 2023, 44(03): 168-175. |
[6] | 李杨, 彭来湖, 李建强, 刘建廷, 郑秋扬, 胡旭东. 基于深度信念网络的织物疵点检测[J]. 纺织学报, 2023, 44(02): 143-150. |
[7] | 陈佳, 杨聪聪, 刘军平, 何儒汉, 梁金星. 手绘草图到服装图像的跨域生成[J]. 纺织学报, 2023, 44(01): 171-178. |
[8] | 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227. |
[9] | 安亦锦, 薛文良, 丁亦, 张顺连. 基于图像处理的纺织品耐摩擦色牢度评级[J]. 纺织学报, 2022, 43(12): 131-137. |
[10] | 陈金广, 李雪, 邵景峰, 马丽丽. 改进YOLOv5网络的轻量级服装目标检测方法[J]. 纺织学报, 2022, 43(10): 155-160. |
[11] | 江慧, 马彪. 基于服装风格的款式相似度算法[J]. 纺织学报, 2021, 42(11): 129-136. |
[12] | 杨争妍, 薛文良, 张传雄, 丁亦, 马颜雪. 基于生成式对抗网络的用户下装搭配推荐[J]. 纺织学报, 2021, 42(07): 164-168. |
[13] | 李珣, 南恺恺, 赵征凡, 王晓华, 景军锋. 多智能体博弈的纺织车间搬运机器人任务分配[J]. 纺织学报, 2020, 41(07): 78-87. |
[14] | 许倩, 陈敏之. 基于深度学习的服装丝缕平衡性评价系统[J]. 纺织学报, 2019, 40(10): 191-195. |
[15] | 刘正东, 刘以涵, 王首人. 西装识别的深度学习方法[J]. 纺织学报, 2019, 40(04): 158-164. |
|