纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 203-210.doi: 10.13475/j.fzxb.20221202301

• 机械与设备 • 上一篇    下一篇

经编机电子横移运动同步性补偿设计

夏风林(), 张航, 张琦, 郑宝平   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2022-12-19 修回日期:2023-08-09 出版日期:2024-01-15 发布日期:2024-03-14
  • 作者简介:夏风林(1966—),男,教授,博士。主要研究方向为针织产品开发与装备数控技术。E-mail: xiafl_622@163.com
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(JUSRP122003);江苏省自然科学青年基金项目(BK20221094)

Dynamic compensation design for electronic shogging movement in warp knitting machines

XIA Fenglin(), ZHANG Hang, ZHANG Qi, ZHENG Baoping   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University,Wuxi, Jiangsu 214122, China
  • Received:2022-12-19 Revised:2023-08-09 Published:2024-01-15 Online:2024-03-14

摘要:

为解决经编机电子横移系统中横移动作滞后、不能满足经编机高速运转需要的问题,通过实验测试了经编机电子横移系统中常用的3种交流伺服系统的伺服驱动器接收的指令信号曲线和伺服电动机实际运动曲线,确定了各伺服系统的运动响应的滞后时间,并针对性地设计了一种与主轴运转实时同步的横移指令信号以弥补横移滞后的补偿方案,即根据经编机实时转速来动态预置横移指令信号的提前量,以弥补电子横移系统的滞后时间。结果表明:在相同系统配置条件下,电子横移系统通过设置合适的指令信号提前时间量作为补偿值,即根据经编机主轴的当前运转速度,采用提前发出横移指令信号的方法可有效补偿横移伺服的滞后响应特性,保证了梳栉横移与摆动动作的同步性,电子横移经编机的运转速度可提高约18%,从而显著提升电子横移经编机的生产效率。

关键词: 经编机, 电子横移系统, 生产速度, 伺服控制, 响应特性

Abstract:

Objective When the electronic shogging system of a warp knitting machine is in operation, it needs a certain period to process and transmit the shogging control signal, resulting in the lag of the shogging of the guide bar, which makes the shogging and the swing of the guide bar not synchronized, affecting the high-speed operation of the warp knitting machine. If the shogging lag of the guide bar can be dynamically compensated, the lag of the electronic shogging system could be improved or even eliminated, thus improving the overall performance of the electronic shogging control high-speed warp knitting machine.

Method The shogging command signal received by the servo driver and the actual running signal of the servo motor in the electronic shogging system were collected in real time by the monitoring software. Three types of AC servo systems commonly used in the electronic shogging system of the warp knitting machine, such as Yaskawa, Tamagawa and Inovance, at different speeds of 700 r/min, 1 100 r/min, 1 500 r/min and 1 900 r/min were involved in the research. The lag between the shogging command curve and the actual motion curve of the systems above was evaluatedin to understand the effect of different running speed of warp knitting machines.

Results Through testing the shogging command curve and the actual motion curve of the electronic shogging system using three kinds of AC servo systems at different speeds of 700 r/min, 1 100 r/min, 1 500 r/min and 1 900 r/min of warp knitting machines, it was found that the actual motion curve of the servo motor lagged behind the command curve of the servo driver in the electronic shogging systems with all three different shogging servo systems. The lag time of the electronic shogging system of the same servo system did not change with the running speed of warp knitting machine, that is, the lag time of the system was constant when the configuration of the electronic shogging system are fixed. The lag time of the electronic shogging servo system with different servo systems was found different, which was related to the performance and internal parameter setting of the shogging servo system itself. On this basis, the shogging lag was pre-compensated by modifying the corresponding control program in the electronic shogging system. During the operation of the warp knitting machines, the running speed of the machine main shaft was detected in real time, and the current shogging angle compensation value caused by the lag was calculated, which was then used for the shogging command control of the next knitting cycle. Through the test of the command curve of the shogging servo driver and the actual motion curve of the servo motor under the conditions of no compensation and compensation, the following synchronization of the actual motion curve of the servo motor and the command curve of the servo driver after compensation was improved, and the running speed of the warp knitting machine of the electronic shogging system was improved, from the original 1 780 r/min to more than 2 100 r/min, and the running performance and working efficiency of the high-speed warp knitting machine were improved effectively.

Conclusion The shogging data in the electronic shogging system of the warp knitting machine needs to be calculated and transmitted, and the motion response of the servo system is delayed, which makes the actual motion of the shogging servo motor lag. When the system configuration is fixed, the shogging lag time is constant regardless of the running speed of warp knitting machine. The actual shogging lag of the guide bar of the electronic shogging system of the warp knitting machine affect the synchronization between the swing and the shogging of the guide bar, especially with the improvement of the running speed of the machine, making the warp knitting machine unable to run well. By presetting a forward of the guide-bar shogging angle, the lag compensation of the electronic shogging system has been achieved, and the running characteristics of the electronic shogging system of the warp knitting machine are effectively improved. The practice shows that the running speed of the warp knitting machine can be increased by 18%, which greatly improves the running speed of high-speed warp knitting machine with electronic shogging system.

Key words: warp knitting machine, electronic shogging system, running speed, servo control, response characteristic

中图分类号: 

  • TS183.92

图1

经编机主轴一转中的梳栉允许横移角度"

图2

经编机电子横移系统整体结构"

图3

不同转速下的指令曲线与实际运动曲线(安川伺服系统)"

图4

不同转速下的指令曲线与实际运动曲线(多摩川伺服系统)"

图5

不同转速下的指令曲线与实际运动曲线(汇川伺服系统)"

图6

电子横移系统滞后实时补偿控制流程"

图7

有/无补偿的GB1横移实测曲线对比"

[1] 沈瑞超, 郗欣甫, 蔡飞飞, 等. 基于模糊电子凸轮曲线控制的经编机电子横移控制系统[J]. 东华大学学报(自然科学版), 2020, 46(5):779-786.
SHEN Ruichao, CHI Xinfu, CAI Feifei, et al. Electronic shogging control system of warp knitting machine based on fuzzy electronic cam curve control[J]. Journal of Donghua University(Natural Science), 2020, 46(5):779-786.
[2] KARL Mayer. Tricot machine KS4 EL-EBC with electronic pattern drive[J]. Kettenwirk Praxis, 1990(2):8-9.
[3] WEBER M, ZOU Qian. ITMA 2015: Development trend and innovation of warp knitting[J]. Melliand China, 2016, 44(6): 32-38.
[4] JAMS M B. ITMA 2019: Teeming with innovation & positive sentiments[J]. Textile World, 2019, 169(4):4.
[5] 周博. 经编机电子横移系统建模与控制方法研究[D]. 泉州: 华侨大学, 2014:1-48.
ZHOU Bo. Study on the model and control strategy of warp knitting machine[D]. Quanzhou: Huaqiao University, 2014:1-48.
[6] 张琳芳, 黄智坤. 基于PLC与人机界面的经编机电子横移控制系统研究[J]. 广东石油化工学院学报, 2016, 26(6):52-56.
ZHANG Linfang, HUANG Zhikun. Research and application of electronic Shogging system on warp knitting machine through PLC and man-machine interface[J]. Journal of Guangdong University of Petrochemical Technology, 2016, 26(6):52-56.
[7] 张琦, 蒋高明, 夏风林, 等. 动态变结构控制策略在经编机高速电子横移中的应用[J]. 纺织学报, 2013, 34(3):121-126.
ZHANG Qi, JIANG Gaoming, XIA Fenglin, et al. Research on dynamic variable structure control strategy for high-speed electronic shogging motion on warp knitting machine[J]. Journal of Textile Research, 2013, 34(3): 121-126.
[8] 郑宝平, 蒋高明, 夏风林, 等. 双PID控制的经编机电子横移系统设计[J]. 纺织学报, 2012, 33(5):135-139.
ZHENG Baoping, JIANG Gaoming, XIA Fenglin, et al. Design of electronic shogging system based on double PID control on warp knitting machine[J]. Journal of Textile Research, 2012, 33(5):135-139.
[9] 郑静, 夏风林. 基于PID参数的经编机电子横移系统优化[J]. 上海纺织科技, 2018, 46(5):52-55.
ZHENG Jing, XIA Fenglin. Optimization of electronic traverse system of warp knitting machine based on PID parameters[J]. Shanghai Textile Science & Technology, 2018, 46(5):52-55.
[10] 付睿云, 孟婥, 卜剑秋, 等. 经编机电子横移系统伺服刚度的提高[J]. 东华大学学报(自然科学版), 2019, 45(2): 270-274.
FU Ruiyun, MENG Zhuo, BU Jianqiu, et al. Improvement of servo stiffness of electronic shogging system on warp knitting machine[J]. Journal of Donghua University (Natural Science), 2019, 45( 2) :270-274.
[11] 苏柳元, 孟婥, 张玉井, 等. 经编机梳栉横移系统误差建模与仿真[J]. 纺织学报, 2018, 39(8):130-137.
SU Liuyuan, MENG Zhuo, ZHANG Yujing, et al. Modeling and simulation of transverse motion error of guide bar shogging system of warp knitting machine[J]. Journal of Textile Research, 2018, 39(8): 130-137.
[12] 王博浩, 郗欣甫, 孙以泽. 基于时域法的经编机电子横移系统动态性能[J]. 东华大学学报(自然科学版), 2021, 47(6):58-65.
WANG Bohao, CHI Xinfu, SUN Yize. Dynamic performance of electronic shogging system of warp knitting machine based on time domain method[J]. Journal of Donghua University(Natural Science), 2021, 47(6):58-65.
[13] 郭威东, 夏风林, 张琦, 等. 经编机电子横移系统高速响应性的影响因素[J]. 纺织学报, 2021, 42(1):162-166.
GUO Weidong, XIA Fenglin, ZHANG Qi, et al. Influence factors of high speed response of electronic traverse system of warp knitting machine[J]. Journal of Textile Research, 2021, 42(1):162-166.
[14] 郑宝平, 蒋高明, 夏风林, 等. 基于模型预测的经编送经动态张力补偿控制系统[J]. 纺织学报, 2021, 42(9),163-169.
ZHENG Baoping, JIANG Gaoming, XIA Fenglin, et al. Dynamic tension compensation control system of warp knitting let-off based on model prediction[J]. Journal of Textile Research, 2021, 42(9),163-169.
[15] 鲁斌. 自给能中子探测器多模式信号延迟补偿算法研究[D]. 兰州: 兰州大学, 2022:1-41.
LU Bin. Research on multi-mode signal delay compensation algorithm for self-powered neutron detector[D]. Lanzhou: Lanzhou University, 2022:1-41.
[16] 姜福喜. 基于扰动估计与动态补偿的伺服系统鲁棒跟踪控制设计[D]. 湘潭: 湖南科技大学, 2021:5-49.
JIANG Fuxi. Robust tracking control design of servo system based on disturbance estimation and dynamic compensation[D]. Xiangtan: Hunan University of Science and Technology, 2021:5-49.
[17] 朱文斌. 机器人力控磨削系统的标定与动态补偿技术研究[D]. 太原: 中北大学, 2021:6-39.
ZHU Wenbin. Research on calibration and dynamic compensation technology of robotic force-controlled grinding system[D]. Taiyuan: North University of China, 2021:6-39.
[18] 蒋高明. 针织学[M]. 中国纺织出版社, 2015:178-185.
JIANG Gaoming. Knitting technology[M]. China Textile & Apparel Press, 2015:178-185.
[1] 戴宁, 梁汇江, 胡旭东, 陆哲昊, 徐开心, 袁嫣红, 屠佳佳, 曾志发. 纬编针织机编织过程中三角振动响应特性[J]. 纺织学报, 2023, 44(10): 181-187.
[2] 孙园园, 张琦, 张燕婷, 左露娇, 丁宁宇. 三维通孔结构三色三贾卡提花间隔鞋材的研发[J]. 纺织学报, 2023, 44(07): 110-115.
[3] 杨宏脉, 张效栋, 闫宁, 朱琳琳, 李娜娜. 一种高鲁棒性经编机上断纱在线检测算法[J]. 纺织学报, 2023, 44(05): 139-146.
[4] 陈志昊, 包文杰, 李富才, 静波, 黄朝林, 孙建文. 基于快速自适应经验模态分解的高速经编机振动分析[J]. 纺织学报, 2023, 44(04): 204-211.
[5] 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163.
[6] 郑宝平, 蒋高明. 基于云服务器的经编机数据管理系统设计[J]. 纺织学报, 2022, 43(07): 186-192.
[7] 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63.
[8] 郑宝平, 蒋高明, 夏风林, 张爱军. 基于模型预测的经编送经动态张力补偿系统设计[J]. 纺织学报, 2021, 42(09): 163-169.
[9] 郭威东, 夏风林, 张琦. 经编机电子横移系统高速响应性的影响因素[J]. 纺织学报, 2021, 42(01): 162-166.
[10] 孙帅, 缪旭红, 张琦, 王瑾. 高速经编机上纱线张力的波动规律[J]. 纺织学报, 2020, 41(03): 51-55.
[11] 汪健东, 夏风林, 李亚林, 赵钰宁. 经编机梳栉电子横移伺服的最优滑模控制[J]. 纺织学报, 2020, 41(02): 143-148.
[12] 徐云龙, 夏风林. 双针床经编机间隔距离对纱线需求量的影响分析[J]. 纺织学报, 2019, 40(08): 151-156.
[13] 张琦, 魏莉, 罗成, 夏风林, 蒋高明. 基于双总线架构的经编机双贾卡提花控制系统[J]. 纺织学报, 2019, 40(07): 145-150.
[14] 徐云龙, 夏风林. 双针床经编机梳栉摆动对瞬时需纱量和纱线张力的影响[J]. 纺织学报, 2019, 40(06): 106-110.
[15] 苏柳元 孟婥 张玉井 赵义满. 经编机梳栉横移系统误差建模与仿真[J]. 纺织学报, 2018, 39(08): 130-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!