纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 211-219.doi: 10.13475/j.fzxb.20220803701

• 机械与设备 • 上一篇    下一篇

基于自抗扰控制的圆纬机恒张力输纱控制系统设计

彭来湖1, 谢国旺1, 戴宁1,2()   

  1. 1.浙江理工大学 浙江省现代纺织装备技术重点实验室, 浙江 杭州 310018
    2.浙江理工大学纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
  • 收稿日期:2022-08-15 修回日期:2023-03-10 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 戴宁(1991—),男,博士。主要研究方向为针织装备技术。E-mail:990713260@qq.com
  • 作者简介:彭来湖(1980—),男,副教授,博士。主要研究方向为针织装备技术。
  • 基金资助:
    浙江省科技尖兵计划项目(2022C01065)

Design of constant yarn feeding tension control system for circular knitting machines based on active disturbance rejection control

PENG Laihu1, XIE Guowang1, DAI Ning1,2()   

  1. 1. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,Zhejiang 310018, China
    2. College of Textile Science and Engineering(Intemational Institute of Silk),Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2022-08-15 Revised:2023-03-10 Published:2024-01-15 Online:2024-03-14

摘要:

针对当前圆纬机积极式送纱方式中存在的纱线张力及输送速度不可任意调节、纱线张力波动大等问题,提出了一种可为圆纬机输送恒定张力纱线的输纱控制系统。构建了以无刷直流电动机速度环为内环、以纱线张力为外环的纱线恒张力双闭环反馈控制系统,通过自抗扰控制技术获取纱线实时动态指标,并对无刷直流电动机目标转速进行调整,最后通过磁场定向控制技术驱动无刷直流电动机。详细阐述了纱线张力的形成机制、纱线恒张力输送控制方案、系统硬件设计及控制算法。输纱测试表明,该控制系统可实现多种类型纱线的恒定张力输送。其中,棉纱张力波动标准差为1.5 cN(300 m/min测试条件),氨纶包芯纱的张力波动标准差为0.33 cN(240 m/min测试条件)。输纱速度的调节范围为0 ~600 m/min,纱线张力的控制范围为2.0~50.0 cN。

关键词: 恒张力, 输纱器, 无刷直流电动机, 磁场定向控制, 自抗扰控制, 圆纬机

Abstract:

Objective Yarn tension is a critical parameter in the textile process, and its fluctuation directly affects the fabric quality. Aiming at the problems existing in the yarn feeding mode of circular knitting machines, such as large fluctuation of yarn tension, unadjustable yarn tension and feeding speed, a new yarn feeding control system based on active disturbance rejection control is proposed.

Method Through the mathematical modeling of yarn tension, its formation mechanism and influencing factors were clarified. Based on this, a series of design schemes were proposed, such as the control strategy of feeding with constant tension, the main hardware structure of the system, and the closed-loop control algorithm of yarn tension. The system used PID controller to control the speed loop of the brushless direct-current (DC) motor in the inner closed loop and and active disturbance rejection controller to control the tension loop of yarn in the outer closed loop. Both of them constituted the inner and outer double closed loop control system of constant tension yarn feeding on circular knitting machine. Among them, active disturbance rejection control technology was adopted to obtain real-time yarn dynamic index, and to combine each yarn dynamic index through a nonlinear combination method to obtain the corrected reference speed of the brushless DC motor. The reference speed was finally applied to the brushless DC motor through the field oriented control technology. It was adopted to adjust the yarn feeding speed and ensure that the yarn tension is maintained near the set value.

Results The yarn feeding test showed that the system achieved better results in controlling yarn tension fluctuation and overshoot. Taking the first group of experiments as an example, the yarn tension overshoot decreased by 50% and 54%, respectively, and the standard deviation of tension fluctuation decreased by 15% and 25%, respectively. The second group of experiments also reflected this rule, and it also showed that the fluctuation of yarn tension increased significantly with the increase of yarn feeding speed. When the target yarn tension increased by 52% instantaneously, the actual yarn tension reached the target yarn tension without obvious overshoot within 70ms. At the same time, the tension showed good real-time and following performance during continuous changes. In case of sudden change of yarn feeding speed, the yarn feeder reacted quickly to ensure that the yarn tension was still maintained close to the set value, and the yarn tension overshoot during the speed change process was controlled within 20%. In addition, the feeder also demionstrated good performance of constant tension control for elastic and non-elastic yarn. The test results suggested the suitability for the constant tension yarn feeding control system to be used for feeding yarns with small tension fluctuation and readjustable yarn feeding speed and yarn tension, which meets the process requirements for the circular knitting under different working conditions.

Conclusion The new constant tension yarn feeding control system plays an important role in improving the intelligence of circular knitting machine, reducing the surface defects of fabrics, improving the elastic evenness of fabrics, and reducing the yarn breaking rate. The yarn feeder has the characteristics of programmability and wide range of yarn applications. It can also be conveniently applied to automatic winding machine, hosiery machine, seamless underwear machine and other textile equipments. Considering the large fluctuation of yarn tension under high-speed feeding conditions, a series of optimizations should be made in future research for the wire storage disk of the yarn feeder for yarns with small diameter and weak strength, such as the winding path, the number of winding turns, and the roughness of the contact surface of the wire storage disk.

Key words: constant tension, yarn feeder, brushless direct-current motor, field oriented control, active disturbance rejection, circular knitting machine control

中图分类号: 

  • TS181.8

图1

圆纬机机械结构图"

图2

圆纬机恒张力输纱控制系统总体方案"

图3

系统总体硬件结构框图"

图4

纱线恒张力控制算法框架"

图5

无刷直流电动机磁场定向控制程序框图"

表1

FOC控制算法中的符号变量及其说明"

符号名 符号说明 符号名 符号说明
ωref 电动机参考转速 vα α轴电压矢量
ω 电动机实际转速 vβ β轴电压矢量
θ 电动机转子角度 ia 电动机A相电流
iqref 转速控制信号 ib 电动机B相电流
iq 交轴电流矢量 ic 电动机C相电流
id 直轴电流矢量 Ta A相逆变器开启时间
vq 交轴控制信号 Tb B相逆变器开启时间
vd 直轴控制信号 Tc C相逆变器开启时间

图6

恒张力输纱测试平台"

图7

自抗扰控制在不同目标张力下的纱线张力波动情况"

图8

PID控制在不同目标张力下的纱线张力波动情况"

图9

自抗扰控制在不同输纱速度下的纱线张力波动情况"

图10

PID控制在不同输纱速度下的纱线张力波动情况"

图11

变张力输纱条件下的纱线张力波动情况"

图12

变速度输纱条件下的纱线张力波动情况"

图13

弹性与非弹性纱线张力波动情况"

[1] 李雪娇, 张琦. 高速经编机纱线动态张力自适应式积极调控[J]. 针织工业, 2022,(5):13-16.
LI Xuejiao, Zhang Qi. Adaptive active control of yarn dynamic tension on high speed warp knitting machine[J]. Knitting Industries, 2022, (5): 13-16.
[2] 王锦鹏. 纬编大圆机针织面料横档疵点的研究[D]. 上海: 东华大学, 2020:4-12.
WANG Jinpeng. Investigation on transverse defects of knitted fabrics on circular knitting machine[D]. Shanghai: Donghua University, 2020: 4-12.
[3] 彭来湖, 罗昌, 牛冲, 等. 针织纬编氨纶输送控制技术[J]. 纺织学报, 2021, 42(4):162-169.
PENG Laihu, LUO Chang, NIU Chong, et al. Control technology for spandex yarn delivery in weft knitting[J]. Journal of Textile Research, 2021, 42(4): 162-169.
[4] 戴宁, 彭来湖, 胡旭东, 等. 圆纬机主动式动态送纱控制技术[J]. 纺织学报, 2018, 39(9):153-159.
DAI Ning, PENG Laihu, HU Xudong, et al. Control technology for active dynamical yarn feeding for circular weft knitting machine[J]. Journal of Textile Research, 2018, 39(9): 153-159.
[5] 马海鹏. 针织圆纬机自动化和信息化关键技术研究[D]. 杭州: 浙江理工大学, 2017:15-17.
MA Haipeng. Research on the key technology of the automation and information of circular knitting machine[D]. Hangzhou: Zhejiang Sci-Tech University, 2017: 15-17.
[6] 郑灵瑜. 圆纬机高精度动态送纱步进电机控制技术的研究[D]. 西安: 西安工程大学, 2021:13-14.
ZHENG Lingyu. Research on control technology of high-precision dynamic yarn feeding stepping motor for circular weft knitting machine[D]. Xi'an: Xi'an Polytechnic University, 2021: 13-14.
[7] 曹萱, 关文卿, 罗蕊. 基于SVPWM及ADRC算法的无刷直流电机转矩脉动抑制控制系统研究[J]. 测控技术, 2021, 40(1):150-156.
CAO Xuan, GUAN Wenqing, LUO Rui. Brushless motor torque ripple suppression control system based on SVPWM and ADRC algorithm[J]. Measurement & Control Technology, 2021, 40(1): 150-156.
[8] 戴宁, 彭来湖, 胡旭东, 等. 基于轴向运动悬臂梁理论的无缝内衣机织针横向振动特性[J]. 纺织学报, 2021, 42(2):193-200.
DAI Ning, PENG Laihu, HU Xudong, et al. Transverse vibration characteristics of knitting needles in seamless underwear machines based on axial movement cantilever beam theory[J]. Journal of Textile Research, 2021, 42(2): 193-200.
[9] OZGE C, RECEP E. Experimental investigation of effect of balloon length on yarn tension during unwind-ing[J]. International Journal of Clothing Science and Technology, 2019, 31(4): 495-509.
doi: 10.1108/IJCST-08-2018-0105
[10] 王延年, 武阳, 吕志发, 等. 输纱器恒张力模糊ADRC控制策略研究[J]. 国外电子测量技术, 2021, 40(8):52-56.
WANG Yannian, WU Yang, Lv Zhifa, et al. Research on fuzzy ADRC control strategy of constant tension yarn feeder[J]. Foreign Electronic Measurement Technology, 2021, 40(8): 52-56.
[11] 陈传亮, 王成群, 吕文涛, 等. 纱线张力传感器的研究进展[J]. 现代纺织技术, 2022, 30(4):1-10.
CHEN Chuanliang, WANG Wengqun, LV Wentao, et al. Research progress on yarn tension sensors[J]. Advanced Textile Technology, 2022, 30(4):1-10.
[12] 乔鑫宇, 周文雅, 吴国强. 自抗扰fal函数的改进及在无拖曳卫星中的应用[J]. 航天控制, 2022, 40(4):38-44.
QIAO Xinyu, ZHOU Wenya, WU Guoqiang. Fal function improvement of ADRC and its application in drag-free satellite[J]. Aerospace Control, 2022, 40(4):38-44.
[13] 韩京清. 从PID技术到“自抗扰控制”技术[J]. 控制工程, 2002, 9(3):13-18.
HAN Jingqing. From PID technology to ADRC tech-nology[J]. Control Engineering of China, 2002, 9(3): 13-18.
[1] 郑培晓, 蒋高明, 丛洪莲, 李炳贤. 多色调线横条纹织物的设计与三维仿真[J]. 纺织学报, 2023, 44(06): 85-90.
[2] 屠佳佳, 李长征, 戴宁, 孙磊, 毛慧敏, 史伟民. 机械式打结机纱线捕获状态检测方法[J]. 纺织学报, 2023, 44(05): 205-212.
[3] 彭来湖, 罗昌, 戴宁, 胡旭东, 牛冲. 动态恒张力氨纶输送控制研究[J]. 纺织学报, 2023, 44(04): 194-203.
[4] 袁嫣红, 曾洪铭, 茅木泉. 基于图像处理的选针器检测系统[J]. 纺织学报, 2022, 43(10): 176-182.
[5] 屠佳佳, 孙磊, 毛慧敏, 戴宁, 朱婉珍, 史伟民. 圆纬机纱架自动换筒技术[J]. 纺织学报, 2022, 43(07): 178-185.
[6] 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191.
[7] 彭来湖, 罗昌, 牛冲, 吕永法, 胡旭东, 戴宁. 针织纬编氨纶输送控制技术[J]. 纺织学报, 2021, 42(04): 162-169.
[8] 彭来湖, 王罗俊, 胡旭东, 吴振辉, 袁嫣红. 磁保持电子选针器及串行总线提花系统设计[J]. 纺织学报, 2019, 40(01): 136-141.
[9] 彭来湖 吴英刚 王罗俊 胡旭东. 针织圆纬机牵拉张力闭环控制技术[J]. 纺织学报, 2018, 39(10): 125-130.
[10] 戴宁 彭来湖 胡旭东 吕明来 未印. 圆纬机主动式动态送纱控制技术[J]. 纺织学报, 2018, 39(09): 153-159.
[11] 彭来湖 陈青松 汝欣 胡旭东 沈春娅. 圆纬机互联互通关键技术[J]. 纺织学报, 2018, 39(05): 119-124.
[12] 彭来湖 吕江东 汝欣 史伟民 向忠. 提花圆纬机花型图案嵌入式显现系统[J]. 纺织学报, 2016, 37(08): 138-142.
[13] 史伟民 郭波锋 彭来湖 袁嫣红. 采用高速串行总线的圆纬机选针驱动器设计[J]. 纺织学报, 2015, 36(05): 110-114.
[14] 姜磊. 卷染机自动控制系统的改造设计[J]. 纺织学报, 2015, 36(03): 121-127.
[15] 吴晓光 孔令学 朱里 武玉琴 黄振 李爽. 磁悬浮式针织提花驱动方式理论研究与探讨[J]. 纺织学报, 2012, 33(10): 128-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!