纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 220-229.doi: 10.13475/j.fzxb.20221005502

• 综合述评 • 上一篇    下一篇

聚丁二酸丁二醇酯性能调控策略及应用

陈咏1,2, 叶梦婷1,2, 王朝生1,2(), 乌婧1,2,3, 王华平1,2   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.东华大学 纤维材料改性国家重点实验室, 上海 201620
    3.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2022-10-27 修回日期:2023-09-07 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 王朝生(1974—),男,研究员,博士。主要研究方向为聚合反应工程、纤维成形机制及加工。E-mail:cswang@dhu.edu.cn.
  • 作者简介:陈咏(1992—),男,博士。主要研究方向为环境友好高分子材料。
  • 基金资助:
    国家自然科学基金项目(52073054);国家重点研发计划项目(2021YFB3700300)

Research progress in performance regulation strategies of polybutylene succinate

CHEN Yong1,2, YE Mengting1,2, WANG Chaosheng1,2(), WU Jing1,2,3, WANG Huaping1,2   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2022-10-27 Revised:2023-09-07 Published:2024-01-15 Online:2024-03-14

摘要:

为进一步推动可降解高分子材料的研究及产业化道路的发展,以改善聚丁二酸丁二醇酯(PBS)性能及开发功能化材料为目标,通过整理归纳聚合物性能调控策略,综述以聚合物共混改性、分子结构共聚改性及链段扩链改性手段的最新研究成果。讨论了改性单体及结构单元对聚合物的链结构及聚集态结构的影响,具体阐述了柔性、刚性及功能性结构单体在链段中的作用及调控;讨论了分子链结构的引入方式及链结构对聚合物性能的调控,分析嵌段共聚物反应机制及典型化学结构与制备路线;最后总结不同调控策略对聚合物的影响,并指出改性策略与性能的调控需要结合产品需求—生产—应用一体化发展来设计,为PBS基改性产品需求及产业化应用提供研发制备思路。

关键词: 聚丁二酸丁二醇酯, 生物降解材料, 共聚, 嵌段聚合物, 改性策略

Abstract:

Significance While polymer materials bring convenience to people's lives, environmental pollution problems such as non-renewable resource consumption and microplastics caused by the manufacturing and disposal of non-degradable materials have received more attention. Poly (butylene succinate) (PBS) is a potential fully biodegradable aliphatic polyester. However, the long degradation cycle and relatively poor strength and toughness limited the actual processing and application process, and it is difficult to develop industrialization on a large scale. In order to seek new recycled degradable polymer materials as a way to improve and promote the performance optimization and industrialization progress of PBS materials, the performance regulation strategies and applications of PBS polymers were summarized. The latest research results of physical blending modification, molecular structure copolymerization modification and functional block modification of polymers were analyzed. Through the discussions of the influence of the modification control strategy on the chain structure and aggregation structure of the polymer, it is hoped to further promote the research of biodegradable polymer materials and the development of industrialization.

Progress Through the analysis of PBS performance control strategy, the compatibility problem of physical blending is the key drawback and problem. In discussing the blending modification and the role of functional blending, chemical copolymerization modification strategy was found an effective approach to solve the problem of phase separation morphology. By sorting out the comonomers, the modified monomer structures were classified and summarized, and the role of flexible, rigid and functional structural monomers in the chain segment and the influence of structural units on the chain structure and aggregation structure of the polymer were analyzed. The influence of the structure and proportion of typical comonomers on the polymer glass transition temperature was analyzed to illustrate the relationship between the structure and the performance of the material. However, the problem of structural regularity destruction and PBS processing window narrowing caused by the chemical copolymerization strategy still needs to be solved. Then, the functional block modification strategy was described, and the performance of block copolymers was regulated by the introduction of molecular chains and chain structure. The block copolymerization modification strategy was described by the block copolymer reaction mechanism and typical chemical structure and preparation route. The regulation of the structure of polyester polyurethane copolymers was summarized. The influences of the introduction of flexible structure, rigid structure and amorphous structure on the polymerization products were discussed. Finally taking lactic acid as an example, the influences of different regulation strategies on polymers were discussed and analyzed. The advantages and disadvantages of physical and chemical modification strategies were analyzed and compared. The differences of different performance regulation strategies were described. The modification scheme with performance requirements as the starting point, product processing methods as the route, and application fields and final products as the goal was proposed.

Conclusion and Prospect Through the analysis of the above modification strategy, the modification technology and method of polymer should be selected from the perspective of product demand and application environment and combined with the overall relationship of cost-efficiency-performance to realize the integrated development of product demand-production-application, and provide research and development preparation ideas for PBS-based modified product demand and industrial application. By summarizing the performance control strategies of PBS polymers, it is concluded that PBS can be applied to multiple fields such as intelligent medical treatment and degradable materials, rather than being limited to the development of new materials. It is also expected to achieve new breakthroughs in the substitution and performance of traditional polymer materials with its excellent performance and degradable advantages under the background of the times.

Key words: polybutylene succinate, biodegradable material, copolymerization, block polymer, modification strategy

中图分类号: 

  • TQ317

图1

PBS共聚改性单体"

图2

PBS/PLA嵌段聚合物球晶形貌(95 ℃)"

[1] ZHENG Tingting, ZHANG Menglu, WU Lianghuan, et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering[J]. Nature Catalysis, 2022, 5: 388-396.
doi: 10.1038/s41929-022-00775-6
[2] LI Zhongling, WU Wenlong, WANG Menglin, et al. Ambient-pressure hydrogenation of CO2 into long-chain olefins[J]. Nature Communications, 2022, 13: 2396-2406.
doi: 10.1038/s41467-022-29971-5 pmid: 35504867
[3] CHEN Junliang, WU Jing, SHERRELL P C, et al. How to build a microplastics-free environment: strategies for microplastics degradation and plastics recycling[J]. Advanced Science, 2022. DOI:10.1002/advs.202103764.
[4] ZHOU Dawang, CHEN Junliang, WU Jing, et al. Biodegradation and catalytic-chemical degradation strategies to mitigate microplastic pollution[J]. Sustainable Materials and Technologies, 2021. DOI:10.1016/j.susmat.2021.e00251.
[5] EMIAN S M, ONAY T T, DEMIREL B. Biodegradation of bioplastics in natural environments[J]. Waste Management, 2017, 59: 526-536.
doi: S0956-053X(16)30561-X pmid: 27742230
[6] PERERA K Y, AISWAL S, JAISWAL A. A review on nanomaterials and nanohybrids based bio-nanocomposites for food packaging[J]. Food Chemistry, 2021. DOI: 10.1016/j.foodchem.2021.131912.
[7] NORIZAN M N, ABDAN K, TAWAKKAL I A, et al. A review on properties and application of bio-based poly(butylene succinate)[J]. Polymers, 2021. DOI: 10.3390/polym13091436.
[8] TACHIBANA Y, MASUDA T, FUNABASHI M, et al. Synthesis of biomass-based monomers from biomass-based furfural for polyesters and evaluation of their biomass carbon ratios[J]. ACS Symposium Series, 2012, 1105: 91-110.
[9] PLATNIEKS O, GAIDUKOVS S, KUMAR T V, et al. Bio-based poly (butylene succinate): recent progress, challenges and future opportunities[J]. European Polymer Journal, 2021. DOI: 10.1016/j.eurpolymj.110855.
[10] XU Jun, GUO Baohua. Poly (butylene succinate) and its copolymers: research, development and industrialization[J]. Biotechnology Journal, 2010, 5(11): 1149-1163.
doi: 10.1002/biot.201000136 pmid: 21058317
[11] WANG Xin, YANG Hongyu, SONG Lei, et al. Morphology, mechanical and thermal properties of graphene-reinforced poly (butylene succinate) nanocomposites[J]. Composites Science and Technology, 2011, 72(1): 1-6.
doi: 10.1016/j.compscitech.2011.05.007
[12] MIKEL R I, MANUEL S, SENENTXU L M, et al. Magnetically active nanocomposites based on biodegradable polylactide, polycaprolactone, polybutylene succinate and polybutylene adipate terephthalate[J]. Polymer, 2022, 249(17): 1-10.
[13] KANTIMA C, CHUNTIP S. Effect of nanoclay and nano-calcium carbonate content on the properties of polybutylene succinate/nanoparticle composites[J]. Journal of Plastic Film & Sheeting, 2023, 1(1): 1-21.
[14] HOU Hongbo, PU Zejun, WANG Xu, et al. Effect of surface modification of SiO2 particles on the interfacial and mechanical properties of PBS composites[J]. Polymer Composites, 2022, 43(8): 5087-5094.
doi: 10.1002/pc.v43.8
[15] BHATIA A, GUPTA R K, BHATTACHARYA S N, et al. Compatibility of biodegradable poly(lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application[J]. Korea-Australia Rheology Journal, 2007, 19(3): 125-131.
[16] WU Defeng, YUAN Lijuan, LAREDO E, et al. Interfacial properties, viscoelasticity, and thermal behaviors of poly (butylene succinate)/polylactide blend[J]. Industrial & Engineering Chemistry Research, 2012, 51(5): 2290-2298.
doi: 10.1021/ie2022288
[17] HAO Yanping, YANG Huili, PAN Hongwei, et al. Heat resistant and mechanical properties of biodegradable poly (lactic acid)/poly (butylene succinate) blends crosslinked by polyaryl polymethylene isocyanate[J]. Polymer-Plastics Technology and Engineering, 2018, 57(18): 1882-1892.
doi: 10.1080/03602559.2018.1447123
[18] WERAPORN P A, SUPAPHORN T, SOMMAI P A, et al. Mechanical properties and crystallization of talc filled poly(lactic acid)/poly(butylene succinate) blend composites[J]. Antec, 2013: 239-243.
[19] LARGUECH S, TRIKI A, RAMACHANDRAN M, et al. Dielectric properties of jute fibers reinforced poly(lactic acid)/poly(butylene succinate) blend matrix[J]. Journal of Polymers and the Environment, 2020, 29(4): 1240-1256.
doi: 10.1007/s10924-020-01927-0
[20] NOBILE M R, CROCITTI A, MALINCONICO M, et al. Preparation and characterization of polybutylene succinate (PBS) and polybutylene adipate-terephthalate (PBAT) biodegradable blends[C]// 9th International Conference on “Times of Polymers and Composites”:from Aerospace to Nanotechnology. Ischia: American Institute of Physics, 2018: 17-21.
[21] QIU Zhaobing, KOMURA M, IKEHARA T, et al. Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters: poly(butylene succinate) and poly(ε-caprolactone)-science direct[J]. Polymer, 2003, 44(25): 7749-7756.
doi: 10.1016/j.polymer.2003.10.013
[22] KATAOKA T, HIRAMOTO K, KURIHARA H, et al. Effects of melt annealing on the miscibility and crystallization of poly (butylene succinate)/poly (ethylene succinate) blends[J]. Polymer Journal, 2014, 46(7): 405-411.
doi: 10.1038/pj.2014.11
[23] HSU K H, CHEN C W, WANG L Y, et al. Bio-based thermoplastic poly(butylene succinate-co-propylene succinate) copolyesters: effect of glycerol on thermal and mechanical properties[J]. Soft Matter, 2019, 15 (47): 9710-9720.
doi: 10.1039/C9SM01958H
[24] JING Jing, LI Song, SU Tingting, et al. Effects of monomer composition on physical properties and enzymatic hydrolyzability of poly(butylene succinate-co-hexamethylene succinate)s[J]. Polymer Engineering & Science, 2020, 61(2): 379-387.
[25] DAI Xun, QIU Zhaobin. Synthesis and properties of novel biodegradable poly(butylene succinate-co-decamethylene succinate) copolyesters from renewable resources[J]. Polymer Degradation and Stability, 2016: 305-310.
[26] 戴勋. 聚丁二酸丁二醇酯共聚物的合成、结晶行为与性能研究[D]. 北京: 北京化工大学, 2017:41-65.
DAI Xun. Synthesis, crystallization behavior and properries of poly (butylene succinate) and its copolyesters[D]. Beijing: Beijing University of Chemical Technology, 2017: 41-65.
[27] DEBUISSY Thibaud, POLLET Eric, AVEROUS Luc. Synthesis and characterization of biobased poly(butylene succinate-ran-butylene adipate): analysis of the composition-dependent physicochemical properties[J]. European Polymer Journal, 2017, 87: 84-98.
doi: 10.1016/j.eurpolymj.2016.12.012
[28] DÍAZ A, FRANCO L, PUIGGALI J. Study on the crystallization of poly(butylene azelate-co-butylene succinate) copolymers[J]. Thermochimica Acta, 2014, 575: 45-54.
doi: 10.1016/j.tca.2013.10.013
[29] AMIN Cao, TAKASHI Okamura, CHIEKO Ishiguro, et al. Studies on syntheses and physical characterization of biodegradable aliphatic poly(butylene succinate-co-ε-caprolactone)s[J]. Polymer, 2002, 43(3): 671-679.
doi: 10.1016/S0032-3861(01)00658-9
[30] WU Linbo, MINCHEVA R, XU Yutao, et al. High molecular weight poly (butylene succinate-co-butylene furandicarboxylate) copolyesters: from catalyzed polycondensation reaction to thermomechanical properties[J]. Biomacromolecules, 2012, 13(9): 2973-2981.
doi: 10.1021/bm301044f pmid: 22830993
[31] QI Jiefei, WU Jing, CHEN Jingying, et al. An investigation of the thermal and biodegradability of PBS copolyesters based on isosorbide[J]. Polymer Degradation and Stability, 2019, 160: 229-241.
doi: 10.1016/j.polymdegradstab.2018.12.031
[32] QU Dezhi, WANG Lipeng, SUN Shuai, et al. Properties of poly(butylene-co-isosorbide succinate) after blown film extrusion[J]. Green Materials, 2020, 8(2): 68-78.
doi: 10.1680/jgrma.19.00017
[33] JIN H J, LEE B Y, KIM M N, et al. Thermal and mechanical properties of mandelic acid-copolymerized poly(butylene succinate) and poly(ethylene adipate)[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(11): 1504-1511.
doi: 10.1002/(ISSN)1099-0488
[34] WANG L, ZHANG M, LAWSON T, et al. Poly (butylene succinate-co-salicylic acid) copolymers and their effect on promoting plant growth[J]. Royal Society Open Science, 2019. DOI:10.1098/rsos.190504.
[35] NAGATA M, GOTO H, SAKAI W, et al. Synthesis and enzymatic degradation of poly(tetramethylene succinate) copolymers with terephthalic acid[J]. Polymer, 2000, 41(11): 4373-4376.
doi: 10.1016/S0032-3861(99)00727-2
[36] LUO Shengli, LI Faxue, YU Jianyong. The thermal, mechanical and viscoelastic properties of poly (butylene succinate-co-terephthalate) (PBST) copolyesters with high content of BT units[J]. Journal of Polymer Research, 2010, 18 (3): 393-400.
doi: 10.1007/s10965-010-9429-x
[37] SUN Yongjian, WU Linbo, BU Zhiyang, et al. Synthesis and thermomechanical and rheological properties of biodegradable long-chain branched poly (butylene succinate-co-butylene terephthalate) copolyesters[J]. Industrial & Engineering Chemistry Research, 2014, 53(25): 10380-10386.
doi: 10.1021/ie501504b
[38] 赵彩霞, 李鑫, 范期程, 等. 聚(丁二酸丁二醇-co-二苯醚二甲酸丁二醇)酯的合成及性能[J]. 高分子材料科学与工程, 2019, 35(12): 36-43.
ZHAO Caixia, LI Xin, FAN Qichen, et al. Synthesis and properties of poly (butylene succinate-co-oxybisbenzoic)[J]. Polymer Materials Science and Engineering, 2019, 35(12): 36-43.
[39] NIKOLIC M S, POLETI D. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene fumarate)s[J]. European Polymer Journal, 2003, 39 (11): 2183-2192.
doi: 10.1016/S0014-3057(03)00139-3
[40] YE H M, WANG R D, LIU J, et al. Isomorphism in poly (butylene succinate-co-butylene fumarate) and its application as polymeric nucleating agent for poly (butylene succinate)[J]. Macromolecules, 2012, 45 (14): 5667-5675.
doi: 10.1021/ma300685f
[41] LI Yi, HUANG Guoyong, CHEN Cong. et al. Poly (butylene succinate-co-butylene acetylenedicarb-oxylate): copolyester with novel nucleation behavior[J]. Polymers, 2021, 13 (3): 365-378.
doi: 10.3390/polym13030365
[42] ZENG J B, HUANG C L, JIAO L, et al. Synthesis and properties of biodegradable poly (butylene succinate-co-diethylene glycol succinate) copolymers[J]. Industrial & Engineering Chemistry Research, 2012, 51 (38): 12258-12265.
doi: 10.1021/ie300133a
[43] GENOVESE L, LOTTI N, GAZZANO M, et al. Novel biodegradable aliphatic copolyesters based on poly-(butylene succinate) containing thioether-linkages for sustainable food packaging applications[J]. Polymer Degradation and Stability, 2016, 132: 191-201.
doi: 10.1016/j.polymdegradstab.2016.02.022
[44] NEGRIN M, MACERATA E, CONSOLATI G, et al. Gamma radiation effects on random copolymers based on poly(butylene succinate) for packaging appli-cations[J]. Radiation Physics and Chemistry, 2018, 142: 34-43.
doi: 10.1016/j.radphyschem.2017.05.011
[45] FABBRI M, GIGLI M, COSTA M, et al. The effect of plasma surface modification on the biodegradation rate and biocompatibility of a poly (butylene succinate)-based copolymer[J]. Polymer Degradation and Stability, 2015, 121: 271-279.
doi: 10.1016/j.polymdegradstab.2015.09.015
[46] ONO H, MINAMIKAWA H, NEMOTO K, et al. Self-assembly and amphiphilic behavior of poly (ester)-block-poly (amide) diblock copolymer based on biodegradable poly (butylene succinate) and poly (2-pyrrolidone)[J]. European Polymer Journal, 2021. DOI: 10.1016/j.eurpolymj.2021.110961.
[47] NAGHAVI S S, RAFIZADEH M, AFSHAR T, et al. Crystallization and photo-curing kinetics of biodegradable poly (butylene succinate-co-butylene fumarate) short-segmented block copolyester[J]. Polymer International, 2017, 66(2): 289-299.
doi: 10.1002/pi.2017.66.issue-2
[48] ZHENG Liuchun, WANG Zhaodong, WU Shaohua, et al. Novel poly (butylene fumarate) and poly (butylene succinate) multiblock copolymers bearing reactive carbon-carbon double bonds: synthesis, characterization, co-crystallization, and properties[J]. Industrial & Engineering Chemistry Research, 2013, 52(18): 6147-6155.
doi: 10.1021/ie303573d
[49] HUANG Caili, JIAO Ling, ZHANG Jingjing, et al. Poly (butylene succinate)-poly (ethylene glycol) multiblock copolymer: synthesis, structure, properties and shape memory performance[J]. Polymer Chemistry, 2012, 3(3): 800-808.
doi: 10.1039/c2py00603k
[50] ZOU J, QI Y, SU L, et al. Synthesis and characterization of poly (ester amide)s consisting of poly (L-lactic acid) and poly(butylene succinate) segments with 2,2'-bis(2-oxazoline) chain extending[J]. Macromolecular Research, 2018, 26 (13): 1212-1218.
doi: 10.1007/s13233-019-7018-3
[51] 黎永利. 扩链改性聚乳酸嵌段共聚物的研究[D]. 西安: 陕西科技大学, 2014: 26-40.
LI Yongli. Studay on chain-extension and modification of poly (lactic acid) block copolymer[D]. Xi'an: Shaanxi University of Science & Technology, 2014: 26-40.
[52] ZHOU Xiaoming, XIE Wenjie. Synthesis and characterization of poly(ester ether urethane)s block copolymers based on biodegradable poly (butylene succinate) and poly(ethylene glycol)[J]. Polymer Degradation and Stability, 2017, 140: 147-155.
doi: 10.1016/j.polymdegradstab.2017.04.023
[53] WANG Jin, ZHENG Liuchun, LI Chuncheng, et al. Synthesis and properties of biodegradable poly (ester-co-carbonate) multiblock copolymers comprising of poly (butylene succinate) and poly (butylene carbonate) by chain extension[J]. Industrial & Engineering Chemistry Research, 2012, 51(33): 10785-10792.
doi: 10.1021/ie300547g
[54] PANWIRIYARAT W, TANRATTANAKUL V, CHUEANGCHAYAPHAN N. Study on physicochemical properties of poly (ester-urethane) derived from biodegradable poly(ε-caprolactone) and poly (butylene succinate) as soft segments[J]. Polymer Bulletin, 2016, 74(6): 2245-2261.
doi: 10.1007/s00289-016-1833-x
[55] SHANG Yaqing, JIANG Zhiguo, QIU Zhaobin. Synthesis, thermal and mechanical properties of novel biobased, biodegradable and double crystalline poly-(butylene succinate)-b-poly(butylene sebacate) multiblock copolymers[J]. Polymer, 2021. DOI: 10.1016/j.polymer.2020.123248.
[56] ZHENG Liuchun, LI Chuncheng, WANG Zhaodong, et al. Novel biodegradable and double crystalline multiblock copolymers comprising of poly(butylene succinate) and poly(ε-caprolactone): synthesis, characterization, and properties[J]. Industrial & Engineering Chemistry Research, 2012, 51 (21): 7264-7272.
doi: 10.1021/ie300576z
[57] LI Shaolong, WU Fang, YANG Yang, et al. Synthesis, characterization and isothermal crystallization behavior of poly(butylene succinate)-b-poly(diethylene glycol succinate) multiblock copolymers[J]. Polymers for Advanced Technologies, 2015, 26 (8): 1003-1013.
doi: 10.1002/pat.3519
[58] ZHENG Liuchun, LI Chuncheng, ZHANG Dong, et al. Synthesis, characterization and properties of novel biodegradable multiblock copolymers comprising poly(butylene succinate) and poly (1,2-propylene terephthalate) with hexamethylene diisocyanate as a chain extender[J]. Polymer International, 2011, 60(4): 666-675.
doi: 10.1002/pi.v60.4
[59] 段荣涛, 董雪, 李德福, 等. 含异山梨醇的全生物基PBS嵌段共聚酯的制备及性能[J]. 高分子学报, 2016, 1 (8): 70-77.
DUAN Rongtao, DONG Xue, LI Defu, et al. Preparation and properties of bio-based PBS multiblock copolyesters containing isosorbide units[J]. Acta Polymerica Sinica, 2016, 1 (8): 70-77.
[60] ZHANG Yang, LI Ting, XIE Zhining, et al. Synthesis and properties of biobased multiblock polyesters containing poly(2,5-furandimethylene succinate) and poly(butylene succinate) blocks[J]. Industrial & Engineering Chemistry Research, 2017, 56 (14): 3937-3946.
doi: 10.1021/acs.iecr.7b00516
[61] ZHENG Liuchun, LI Chuncheng, HUANG Weiguo, et al. Synthesis of high-impact biodegradable multiblock copolymers comprising of poly (butylene succinate) and poly(1,2-propylene succinate) with hexamethylene diisocyanate as chain extender[J]. Polymers for Advanced Technologies, 2011, 22 (2): 279-285.
doi: 10.1002/pat.v22.2
[62] LI Shaolong, WU Fang, WANG Yuzhong, et al. Biobased thermoplastic poly(ester urethane) elastomers consisting of poly (butylene succinate) and poly(propylene succinate)[J]. Industrial & Engineering Chemistry Research, 2015, 54 (24): 6258-6268.
doi: 10.1021/acs.iecr.5b00637
[63] LI Shaolong, WU Fang, YANG Yang, et al. Synthesis, characterization and isothermal crystallization behavior of poly(butylene succinate)-b- poly(diethylene glycol succinate) multiblock copolymers[J]. Polymers for Advanced Technologies, 2015, 26(8): 1003-1013.
doi: 10.1002/pat.3519
[64] LI Shaolong, ZENG Jianbing, WU Fang, et al. Succinic acid based biodegradable thermoplastic poly (ester urethane) elastomers: effects of segment ratios and lengths on physical properties[J]. Industrial & Engineering Chemistry Research, 2014, 53(4): 1404-1414.
doi: 10.1021/ie402499t
[65] SU S, KOPITZKY R, TOLGA S, et al. Poly-lactide (PLA) and its blends with poly (butylene succinate) (PBS): a brief review[J]. Polymers (Basel), 2019.DOI: 10.3390/polym11071193.
[66] TAN Licheng, CHEN Yiwang, ZHOU Weihua, et al. Novel poly(butylene succinate-co-lactic acid) copolyesters: synthesis, crystallization, and enzymatic degradation[J]. Polymer Degradation and Stability, 2010, 95 (9): 1920-1927.
doi: 10.1016/j.polymdegradstab.2010.04.010
[67] ZENG Jianbing, LIU Cong, LIU Fangyang, et al. Miscibility and crystallization behaviors of poly (butylene succinate) and poly (L-lactic acid) segments in their multiblock copoly(ester urethane)[J]. Industrial & Engineering Chemistry Research, 2010, 49 (20): 9870-9876.
doi: 10.1021/ie101444x
[1] 尚小愉, 朱坚, 王滢, 张先明, 陈文兴. 侧基含磷阻燃共聚酯的制备及其固相增黏反应[J]. 纺织学报, 2023, 44(07): 1-9.
[2] 夏榆, 姚菊明, 周杰, 毛梦慧, 张玉梅, 姚勇波. 聚丁二酸丁二醇酯/丝胶蛋白共混纤维的制备及其性能[J]. 纺织学报, 2023, 44(04): 1-7.
[3] 杨汉彬, 张圣明, 吴宇豪, 王朝生, 王华平, 吉鹏, 杨建平, 张体健. 聚酰胺6基弹性纤维的制备及其结构与性能[J]. 纺织学报, 2023, 44(03): 1-10.
[4] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[5] 杨振声, 王炳帅. 烯丙基聚烷氧基环氧醚的制备及其性能[J]. 纺织学报, 2022, 43(03): 103-109.
[6] 赵家明, 孙辉, 于斌, 杨潇东. CuO/聚丙烯/乙烯-辛烯共聚物复合熔喷非织造材料的制备及其吸油性能[J]. 纺织学报, 2022, 43(02): 89-97.
[7] 李龙龙, 魏朋, 吴萃霞, 闫金飞, 娄贺娟, 张一风, 夏于旻, 王燕萍, 王依民. 基于对羟基苯丙酸的生物基液晶共聚酯纤维的合成与性能[J]. 纺织学报, 2022, 43(01): 9-14.
[8] 王成龙, 李立新, 吴绍明, 柴丽琴, 周岚. 染色促进剂对聚丁二酸丁二醇酯纤维分散染料染色动力学和热力学的影响[J]. 纺织学报, 2022, 43(01): 147-152.
[9] 万苏影, 包建娜, 王滢, 张先明, 陈世昌, 杨志超, 石教学, 陈文兴. 含磷阻燃共聚酯的熔融增黏反应及其动力学[J]. 纺织学报, 2021, 42(11): 9-16.
[10] 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(07): 11-18.
[11] 靳琳琳, 田俊凯, 李家炜, 戚栋明, 沈晓炜, 邬春涛. 可降解聚羟基乙酸低聚物改性聚酯的合成及其性能[J]. 纺织学报, 2021, 42(01): 16-21.
[12] 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15.
[13] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[14] 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20.
[15] 郭增革, 姜兆辉, 贾曌, 蒲丛丛, 李鑫, 程博闻. 压力对聚对苯二甲酸乙二醇酯-聚酰胺6共聚物/聚酰胺6共混物流变性能的影响[J]. 纺织学报, 2019, 40(12): 27-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!