纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 23-29.doi: 10.13475/j.fzxb.20220803501
刘金鑫1,2, 周雨萱1, 朱柏融1, 吴海波3, 张克勤1()
LIU Jinxin1,2, ZHOU Yuxuan1, ZHU Borong1, WU Haibo3, ZHANG Keqin1()
摘要:
为研究热黏合加固技术对双组分纺黏非织造材料结构和性能的影响,以聚乙烯(PE)为皮层组分、聚丙烯(PP)为芯层组分,采取热轧和热风2种热黏合方式制备了PE/PP皮芯型双组分纺黏非织造材料,借助扫描电子显微镜、自动滤料测试仪、孔径测试仪、渗水性测定仪等对2种方法制备的纺黏非织造材料的结构和性能进行测试与表征,并对造成过滤性能不同的原因进行理论分析,阐释纤维滤材的过滤机制。结果表明:随着面密度的增加,热轧黏合纺黏非织造材料的平均孔径逐渐减小,耐静水压逐渐增加,其中面密度为80 g/m2时,平均孔径为25.74 μm,耐静水压为3.14 kPa;热风黏合纺黏非织造材料在低阻力、高容尘、品质因数方面的表现均优于热轧黏合纺黏非织造材料,其中面密度为80 g/m2时,以质量中值直径为0.26 μm的NaCl气溶胶为过滤媒介,在32 L/min的测试流量下,电晕驻极后热风黏合纺黏非织造材料的过滤效率为76.62%,过滤阻力仅为15.85 Pa;纤维过滤材料的孔隙率越大其过滤阻力越小,容尘量越高。
中图分类号:
[1] | 朵永超, 钱晓明, 郭寻, 等. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(2): 98-104. |
DUO Yongchao, QIAN Xiaoming, GUO Xun, et al. Preparation and properties of hollow pie-segmented high shrinkage polyester/polyamide 6 microfiber non-wovens[J]. Journal of Textile Research, 2022, 43(2): 98-104. | |
[2] | 刘金鑫, 张海峰, 张星, 等. 多级拉伸与热定型对聚乙烯/聚丙烯双组分纤维结构和性能的影响[J]. 纺织学报, 2019, 40(5): 24-29. |
LIU Jinxin, ZHANG Haifeng, ZHANG Xing, et al. Influence of multistage drawing and heat setting on structure and properties of polyethylene/polypropylene bicomponent fibers[J]. Journal of Textile Research, 2019, 40(5): 24-29. | |
[3] |
YEOM B Y, POURDEYHIMI B. Aerosol filtration properties of PA6/PE islands-in-the-sea bicomponent spunbond web fibrillated by high-pressure water jets[J]. Journal of Materials Science, 2011, 46(17): 5761-5767.
doi: 10.1007/s10853-011-5531-7 |
[4] |
LIU J X, ZHANG X, ZHANG H F, et al. Low resistance bicomponent spunbond materials for fresh air filtration with ultra-high dust holding capacity[J]. RSC Advances, 2017, 7(69): 43879-43887.
doi: 10.1039/C7RA07694K |
[5] | 王敏, 韩建, 于斌, 等. 双组分橘瓣型纺粘水刺材料的过滤和力学性能[J]. 纺织学报, 2016, 37(9): 16-20. |
WANG Min, HAN Jian, YU Bin, et al. Filtration and mechanical performance of orange petal shape bicomponent spunbond-spunlace nonwoven mate-rials[J]. Journal of Textile Research, 2016, 37(9): 16-20. | |
[6] |
PRAHSARN C, KLINSUKHON W, ROUNGPAISAN N, et al. Self-crimped bicomponent fibers containing polypropylene/ethylene octene copolymer[J]. Materials Letters, 2013, 91: 232-234.
doi: 10.1016/j.matlet.2012.09.106 |
[7] |
LI Y, JOO C W. Structural factors and physical properties of needle-punched nonwovens based on co-PET/PA bicomponent fibers via alkali treatment[J]. Fibers and Polymers, 2012, 13(4): 456-465.
doi: 10.1007/s12221-012-0456-6 |
[8] |
DAI Z J, SU J F, ZHU X M, et al. Multifunctional polyethylene (PE)/polypropylene (PP) bicomponent fiber filter with anchored nanocrystalline MnO2 for effective air purification[J]. J Mater Chem A, 2018, 6(30): 14856-14866.
doi: 10.1039/C8TA03683G |
[9] | LIU J X, ZHANG H F, GONG H, et al. Polyethylene/polypropylene bicomponent spunbond air filtration materials containing magnesium stearate for efficient fine particle capture[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40592-40601. |
[10] | LIM H. A review of spun bond process[J]. Journal of Textile and Apparel Technology and Management, 2010, 6(3): 1-13. |
[11] |
NANJUNDAPPA R, BHAT G S. Effect of processing conditions on the structure and properties of polypropylene spunbond fabrics[J]. Journal of Applied Polymer Science, 2005, 98(6): 2355-2364.
doi: 10.1002/app.v98:6 |
[12] | FEDOROVA N, VERENICH S, POURDEYHIMI B. Strength optimization of thermally bonded spunbond nonwovens[J]. Journal of Engineered Fibers and Fabrics, 2007, 2(1): 38-48. |
[13] |
LEE E S, FUNG C C, ZHU Y. Evaluation of a high efficiency cabin air (HECA) filtration system for reducing particulate pollutants inside school buses[J]. Environ Sci Technol, 2015, 49(6): 3358-3365.
doi: 10.1021/es505419m |
[14] |
FISK W J, FAULKNER D, PALONEN J, et al. Performance and costs of particle air filtration technologies[J]. Indoor Air, 2002, 12(4): 223-234.
pmid: 12532754 |
[15] |
DAVIES C N. Filtration of aerosols[J]. Journal of Aerosol Science, 1983, 14(2): 147-161.
doi: 10.1016/0021-8502(83)90039-3 |
[1] | 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22. |
[2] | 刘亚, 赵晨, 庄旭品, 赵义侠, 程博闻. 基于Polyflow模拟的茂金属聚乙烯纺黏长丝制备及其性能[J]. 纺织学报, 2023, 44(12): 1-9. |
[3] | 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16. |
[4] | 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35. |
[5] | 李修田, 宋伟广, 张丽平, 杜长森, 付少海. 聚酰胺原液着色母粒的制备及其性能[J]. 纺织学报, 2023, 44(11): 45-51. |
[6] | 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19. |
[7] | 钱耀威, 殷连博, 李家炜, 杨晓明, 李耀邦, 戚栋明. 聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能[J]. 纺织学报, 2023, 44(09): 144-152. |
[8] | 杜姗, 魏云航, 谭宇浩, 吴婷, 李勇, 杨红英, 王明, 周伟涛. 棉织物的硅溶胶/短链含氟聚丙烯酸酯复合拒水整理[J]. 纺织学报, 2023, 44(09): 153-160. |
[9] | 汪泽幸, 周衡书, 杨敏, 谭冬宜. 不同循环加载路径下黄麻织物/聚乙烯复合材料的变形特性[J]. 纺织学报, 2023, 44(09): 99-107. |
[10] | 连丹丹, 王镭, 杨雅茹, 尹立新, 葛超, 卢建军. 服用聚苯硫醚纤维的制备及其性能[J]. 纺织学报, 2023, 44(08): 1-8. |
[11] | 张杏, 叶伟, 龙啸云, 曹海建, 孙启龙, 马岩, 王征. 超高分子量聚乙烯纤维织物/热塑性聚氨酯复合材料的界面黏结性能[J]. 纺织学报, 2023, 44(08): 143-150. |
[12] | 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33. |
[13] | 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56. |
[14] | 陈露, 吴孟锦, 贾立霞, 阎若思. 氧等离子体改性超高分子量聚乙烯纤维复合材料层间损伤声发射特征分析[J]. 纺织学报, 2023, 44(07): 116-125. |
[15] | 张晋, 张林军, 解云川, 王健, 贾寅峰, 路涛, 张志成. 防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 26-32. |
|