纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 48-55.doi: 10.13475/j.fzxb.20220906401

• 纤维材料 • 上一篇    下一篇

银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能

戎成宝1,2, 孙辉1,2(), 于斌1,2   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江省现代纺织技术创新中心, 浙江 绍兴 312000
  • 收稿日期:2022-09-26 修回日期:2023-03-19 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 孙辉( 1976—),女,副教授,博士。主要研究方向为纺织材料的功能化改性。E-mail: sunhui@zstu.edu.cn
  • 作者简介:戎成宝( 1998—),男,硕士生。主要研究方向为纺织材料的抗菌改性。
  • 基金资助:
    浙江省自然科学基金项目(LTGS23E030005);浙江省“高层次特殊人才支持计划”科技创新领导人才项目(2021R52031)

Preparation and antibacterial performances of silver-copper bimetallic nanoparticles/polylactic acid composite nanofiber membranes

RONG Chengbao1,2, SUN Hui1,2(), YU Bin1,2   

  1. 1. College of Textile Science and Engineering ( International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, China
  • Received:2022-09-26 Revised:2023-03-19 Published:2024-01-15 Online:2024-03-14

摘要:

为制备高效抗菌的生物可降解聚乳酸(PLA)静电纺丝纤维膜,首先利用L-抗坏血酸对银和铜的硝酸盐溶液进行化学还原,得到银-铜双金属纳米粒子(Ag-Cu NPs)。然后将Ag-Cu NPs与PLA纺丝液共混,通过静电纺丝技术制备了不同组成的Ag-Cu NPs/PLA复合纳米纤维膜,并对其形貌、结构、亲水性和抗菌性能等进行测试。结果表明:合成的Ag-Cu NPs的粒径约为32 nm,复合纳米纤维膜中Ag-Cu NPs被PLA基体包覆,且沿着纤维径向排列,纤维表面存在大量微小的孔洞;加入Ag-Cu NPs后,Ag-Cu NPs/PLA的水接触角略微降低,亲水性增加,且Ag-Cu NPs和PLA之间仅发生物理作用,未产生明显的化学作用;相比于纯PLA纳米纤维膜,Ag-Cu NPs/PLA的抗菌率明显提高,当纺丝液中Ag-Cu NPs相对于PLA质量为7% 时,复合纳米纤维膜对大肠杆菌和金黄色葡萄球菌的抑菌率均达到99%。

关键词: 聚乳酸, 银-铜双金属纳米粒子, 静电纺丝, 复合纳米纤维膜, 抗菌性能

Abstract:

Objective In the past few decades, the increase of bacterial antibiotic resistance worldwide has posed a serious threat to public health. The research aims to develop green, safe and durable polylactic acid(PLA)antibacterial textiles to protect wounds from the influence of drug-resistant bacteria. In order to develop a green, safe and durable antibacterial textile, PLA were blended with silver-copper bimetallic nanoparticles (Ag-Cu NPs) to prepare Ag-Cu NPs /PLA composite nanofiber membranes with different composition.

Method Silver and copper nitrates first were reduced using ascorbic acid by green synthetic method to obtain Ag-Cu NPs. Then, Ag-Cu NPs were blended with PLA spinning dope to prepare Ag-Cu NPs /PLA composite nanofiber membranes with different compositions by electrostatic spinning. The morphologies, structures, hydrophilicities and antibacterial properties of Ag-Cu NPs/PLA composite nanofiber composites were characterized and analyzed by using scanning electron microscopy, X-ray diffraction, Flourier transform infrared spectroscopy, water contact angle testing and antibacterial testing.

Results Ag-Cu NPs presented an irregular spherical shape with a particle size of about 32 nm. PLA electrospun nanofibers had a uniform diameter and a large number of tiny pores appeared on the fiber surface. Compared with PLA nanofibers, the average fiber diameter of Ag-Cu NPs/PLA composite nanofiber membrane decreased, and the average fiber diameter increased with the increase of Ag-Cu NPs concentration. Ag and Cu elements appeared on the surface of the composite nano-electrospinning membranes and uniformly distributed along the fiber diameter direction, indicating that Ag-Cu NPs were encapsulated by PLA matrix. Compared with PLA, the XRD diffraction peaks belonging to Ag and Cu appeared in the XRD patterns of Ag-Cu NPs/PLA composite nano-electrospinning membranes. The FT-IR spectrum of PLA electrospun nanofiber membrane showed the typical characteristic peaks of PLA. The infrared spectra of Ag-Cu NPs/PLA composite nanofiber membranes were similar to the pure PLA electrospun nanofiber membrane, indicating that there exists only physical interaction between Ag-Cu NPs and PLA matrix. The pure PLA electrospun nanofiber membrane with a water contact angle (WCA) value of about 135° displayed the poor hydrophilicity. The WCA value of Ag-Cu NPs/PLA composite nanofiber membranes slightly decreased compared with pure PLA electrospun nanofiber membrane, meaning the hydrophilicity of the composite nanofiber membranes increased. Pure PLA electrospun nanofiber membrane showed very limited antibacterial ability against Staphylococcus aureus and Escherichia coli. The antibacterial efficiencies of the Ag-Cu NPs /PLA composite nanofiber membranes against these two bacteria were significantly increased with the increasing of Ag-Cu NPs concentration. When the dosage of Ag-Cu NPs was 7%, the composite nano-electrospinning membrane showed high antibacterial activity, and the antibacterial efficiencies for both Staphylococcus aureus and Escherichia coli reached 99%.

Conclusion Ag-Cu NPs/PLA composite nanofiber membranes had excellent antibacterial activity against Staphylococcus aureus and Escherichia coli. When the Ag-Cu NPs dosage was 7%, the antibacterial efficiencies of Ag-Cu NPs /PLA composite nanofiber membrane against both Escherichia coli and Staphylococcus aureus could reach 99%. It is expected that our studies may provide some theoretical reference for the application of PLA nanofiber membrane on the biomedical field.

Key words: polylactic acid, silver-copper bimetallic nanoparticle, electrostatic spinning, composite nanofiber membrane, antibacterial performance

中图分类号: 

  • TS176

图1

Ag-Cu NPs/PLA复合纳米纤维膜的制备路线图"

表1

复合纳米纤维膜组成配比表"

样品名称 不同组分量/g
二氯甲烷 丙酮 PLA Ag-Cu NPs
PLA 16.00 4.00 3.00 0
1%Ag-Cu NPs/PLA 16.00 4.00 3.00 0.03
3%Ag-Cu NPs/PLA 16.00 4.00 3.00 0.09
5%Ag-Cu NPs/PLA 16.00 4.00 3.00 0.15
7%Ag-Cu NPs/PLA 16.00 4.00 3.00 0.21

图2

Ag-Cu NPs、PLA与不同组成的Ag-Cu NPs/PLA的扫描电镜照片"

图3

PLA及不同组成的Ag-Cu NPs/PLA复合纳米纤维膜纤维的平均直径"

表2

静电纺丝纤维膜表面元素含量"

样品名称 元素质量分数/%
C O Ag Cu
PLA 53.57 46.43 0.00 0.00
1%Ag-Cu NPs/PLA 70.72 28.99 0.22 0.06
3%Ag-Cu NPs/PLA 68.46 30.37 0.33 0.85
5%Ag-Cu NPs/PLA 68.66 30.52 0.21 0.62
7%Ag-Cu NPs/PLA 58.20 38.67 0.82 2.31

图4

Ag-Cu NPs/PLA复合纳米纤维膜单根纤维的元素分布图"

图5

PLA及不同组成的Ag-Cu NPs/PLA复合纳米纤维膜的XRD图谱"

图6

PLA及不同组成的Ag-Cu NPs/PLA复合纳米纤维膜的红外光谱图"

图7

PLA与不同组成的Ag-Cu NPs/PLA复合纳米纤维膜的水接触角"

表3

PLA与不同组成的Ag-Cu NPs/PLA复合纳米纤维膜的抑菌率"

样品名称 抑菌率/%
对金黄色葡萄球菌 对大肠杆菌
PLA 8.30±5.92 4.40±3.64
1%Ag-Cu NPs/PLA 96.80±1.88 98.87±0.62
3%Ag-Cu NPs/PLA 97.16±0.58 97.42±1.56
5%Ag-Cu NPs/PLA 96.26±1.89 96.37±2.56
7%Ag-Cu NPs/PLA 99.29±0.57 99.35±0.52
[1] LIU C, SHEN J, YEUNG K W K, et al. Development and antibacterial performance of novel polylactic acid-graphene oxide-silver nanoparticle hybrid nanocomposite mats prepared by electrospinning[J]. ACS Biomaterials Science & Engineering, 2017, 3(3): 471-486.
[2] BALASUBRAMANIAM B, PRATEE K, RANJAN S, et al. Antibacterial and antiviral functional materials: chemistry and biological activity toward tackling COVID-19-like pandemics[J]. ACS Pharmacology & Translational Science, 2020, 4(1): 8-54.
[3] HUSSAIN Z, KHAN M A, IQBAL F, et al. Electrospun microbial-encapsulated composite-based plasticized seed coat for rhizosphere stabilization and sustainable production of canola (Brassica napus L.)[J]. Journal of Agricultural and Food Chemistry, 2019, 67(18): 5085-5095.
doi: 10.1021/acs.jafc.8b06505
[4] SHANG L, YU Y, LIU Y, et al. Spinning and applications of bioinspired fiber systems[J]. ACS Nano, 2019, 13(3): 2749-2772.
doi: 10.1021/acsnano.8b09651 pmid: 30768903
[5] YANG H, WANG L, XIANG C, et al. Electrospun porous PLLA and poly (LLA-co-CL) fibers by phase separation[J]. New Journal of Chemistry, 2018, 42(7): 5102-5108.
doi: 10.1039/C7NJ04970F
[6] ZHANG H, ZHANG T, QIU Q, et al. Quaternary ammonium salt-modified polyacrylonitrile/polycaprolactone electrospun nanofibers with enhanced antibacterial properties[J]. Textile Research Journal, 2021, 91(19/20): 2194-2203.
doi: 10.1177/0040517521997187
[7] ALTAN E, KARACELEBI Y, SAATCIOGLU E, et al. Fabrication of electrospun Juglans regia (Juglone) loaded poly (lactic acid) scaffolds as a potential wound dressing material[J]. Polymers, 2022. DOI: 10.3390/POLYM14101971.
[8] BACKES E H, PIRES L D N, BEATRICE C A G, et al. Fabrication of biocompatible composites of poly-(lactic acid)/hydroxyapatite envisioning medical applications[J]. Polymer Engineering & Science, 2020, 60(3): 636-644.
[9] NONATO R C, MEI L H I, BONSE B C, et al. Nanocomposites of PLA/ZnO nanofibers for medical applications: antimicrobial effect, thermal, and mechanical behavior under cyclic stress[J]. Polymer Engineering & Science, 2022, 62(4): 1147-1155.
[10] GODOY-GALLARDO M, ECKHARD U, DELGADO L M, et al. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications[J]. Bioactive Materials, 2021, 6(12): 4470-4490.
doi: 10.1016/j.bioactmat.2021.04.033
[11] PUTHALATH A K, HAZEL S, KOTTAPPARA R, et al. Synthesis and antibacterial activity of silver-copper nano-composites formed by microwave assisted chemical reduction[J]. Materials Today: Proceedings, 2021, 41: 525-529.
doi: 10.1016/j.matpr.2020.05.238
[12] JUNG H, KING M E, PERSONICK M L. Strategic synergy: advances in the shape control of bimetallic nanoparticles with dilute alloyed surfaces[J]. Current Opinion in Colloid & Interface Science, 2019, 40: 104-117.
doi: 10.1016/j.cocis.2019.02.004
[13] NOWAK A, SZADE J, TALIK E, et al. Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles[J]. Materials Characterization, 2016, 117: 9-16.
doi: 10.1016/j.matchar.2016.04.013
[14] VALDEZ-SALAS B, BELTRÁN-PARTIDA E, ZLATEV R, et al. Structure-activity relationship of diameter controlled Ag@Cu nanoparticles in broad-spectrum antibacterial mechanism[J]. Materials Science and Engineering:C, 2020. DOI:10.1016/j.msec.2020.111501.
[15] ZAIN N M, STAPLEY A G, SHAMA G J. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial appli-cations[J]. Carbohydrate Polymers, 2014, 112:195-202.
doi: 10.1016/j.carbpol.2014.05.081
[16] ZAIN N M, STAPLEY A G F, SHAMA G. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial appli-cations[J]. Carbohydrate Polymers, 2014, 112: 195-202.
doi: 10.1016/j.carbpol.2014.05.081
[17] YUAN Z, ZHANG K, JIAO X, et al. A controllable local drug delivery system based on porous fibers for synergistic treatment of melanoma and promoting wound healing[J]. Biomaterials science, 2019, 7(12): 5084-5096.
doi: 10.1039/c9bm01045a pmid: 31565707
[18] ZHOU Q, XIE J, BAO M, et al. Engineering aligned electrospun PLLA microfibers with nano-porous surface nanotopography for modulating the responses of vascular smooth muscle cells[J]. Journal of Materials Chemistry B, 2015, 3(21): 4439-4450.
doi: 10.1039/c5tb00051c pmid: 32262788
[19] 唐晓鹏. 载银离子多孔纳米纤维制备及抗菌性能研究[D]. 苏州: 苏州大学, 2015:31-32.
TANG Xiaopeng. Preparation and antibacterial properties of porous nanofibers containing silver ions[D]. Suzhou: Soochow University, 2015:31-32.
[20] MA G, YANG D, NIE J. Preparation of porous ultrafine polyacrylonitrile (PAN) fibers by electrospinning[J]. Polymers for Advanced Technologies, 2009, 20(2): 147-150.
doi: 10.1002/pat.v20:2
[21] ZONG X, KIM K, FANG D, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes[J]. Polymer, 2002, 43(16): 4403-4412.
doi: 10.1016/S0032-3861(02)00275-6
[22] YANG H, ZHANG X, VELU P, et al. Enhanced green mediated synthesis of optimized Ag-Cu bimetallic nanoparticles using Leucas aspera and its application in anti-cancer activity against alveolar cancer[J]. Materials Letters, 2022. DOI:10.1016/j.matlet.2021.131645.
[23] KEMALA T, BUDIANTO E, SOEGIYONO B. Preparation and characterization of microspheres based on blend of poly (lactic acid) and poly (ε-caprolactone) with poly (vinyl alcohol) as emulsifier[J]. Arabian Journal of Chemistry, 2012, 5(1): 103-108.
doi: 10.1016/j.arabjc.2010.08.003
[24] WU X, BOURBIGOT S, LI K, et al. Co-pyrolysis characteristics and flammability of polylactic acid and acrylonitrile-butadiene-styrene plastic blend using TG, temperature-dependent FTIR, Py-GC/MS and cone calorimeter analyses[J]. Fire Safety Journal, 2022. DOI: 10.1016/j.firesaf.2022.103543.
[25] DEGHICHE A, HADDAOUI N, ZERRIOUH A, et al. Effect of the stearic acid-modified TiO2 on PLA nanocomposites: morphological and thermal properties at the microscopic scale[J]. Journal of Environmental Chemical Engineering, 2021. DOI: 10.1016/j.jece.2021.106541.
[26] GONG X, PAN L, TANG C Y, et al. Preparation, optical and thermal properties of CdSe-ZnS/poly (lactic acid)(PLA) nanocomposites[J]. Composites Part B: Engineering, 2014, 66: 494-499.
doi: 10.1016/j.compositesb.2014.06.016
[27] PETER A, COZMUTA L M, NICULA C, et al. Chemical and organoleptic changes of curd cheese stored in new and reused active packaging systems made of Ag-graphene-TiO2-PLA[J]. Food Chemistry, 2021. DOI: 10.1016/j.foodchem.2021.130341.
[28] MAMATHA G, SOWMYA P, MADHURI D, et al. Antimicrobial cellulose nanocomposite films with in situ generations of bimetallic (Ag and Cu) nanoparticles using Vitex negundo leaves extract[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31(2):802-815.
doi: 10.1007/s10904-020-01819-9
[29] PERDIKAKI A, GALEOU A, PILATOS G, et al. Ag and Cu monometallic and Ag/Cu bimetallic nanoparticle-graphene composites with enhanced antibacterial performance[J]. ACS Applied Materials & Interfaces, 2016. DOI:10.1021/acsami.6b08403.
[30] ZHOU F, ZHU Y, YANG L, et al. Ag NP catalysis of Cu ions in the preparation of Ag Cu NPs and the mechanism of their enhanced antibacterial efficacy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022. DOI: 10.1016/j.colsurfa.2021.127831.
[31] CRUCES E, ARANCIBIA-MIRANDA N, MANQUIÁN-CERDA K, et al. Copper/silver bimetallic nanoparticles supported on aluminosilicate geomaterials as antibacterial agents[J]. ACS Applied Nano Materials. 2022, 5(1):1472-1483.
doi: 10.1021/acsanm.1c04031
[32] DOOLOTKELDIEVA T, BOBUSHEVA S, ZHASNAKUNOV Z, et al. Biological activity of Ag and Cu monometallic nanoparticles and Ag-Cu bimetallic nanocomposites against plant pathogens and seeds[J]. Journal of Nanomaterials, 2022. DOI: 10.1155/2022/1190280.
[1] 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22.
[2] 杨智超, 刘淑强, 吴改红, 贾潞, 张曼, 李甫, 李慧敏. 可吸收手术缝合线研究进展[J]. 纺织学报, 2024, 45(01): 230-239.
[3] 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38.
[4] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[5] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[6] 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34.
[7] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[8] 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224.
[9] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
[10] 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
[11] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[12] 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23.
[13] 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204.
[14] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[15] 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!