纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 90-98.doi: 10.13475/j.fzxb.20221006301

• 纺织工程 • 上一篇    下一篇

聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯纬编运动T恤面料的热湿舒适性

姚晨曦, 万爱兰()   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2022-10-31 修回日期:2023-08-04 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 万爱兰(1976—),女,副教授,博士。主要研究方向为纺织材料与智能纺织品。E-mail:ailan.wan@jiangnan.edu.cn
  • 作者简介:姚晨曦(2000—),女,硕士生。主要研究方向为针织产品开发及舒适性研究。
  • 基金资助:
    国家自然科学基金项目(61902150);中央高校基本科研业务费专项资金资助项目(JUSRP122003)

Thermal and moisture comfort of polybutylene terephthalate/polyethylene terephthalate weft-knitted sports T-shirt fabrics

YAO Chenxi, WAN Ailan()   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Jiangsu, Wuxi 214122, China
  • Received:2022-10-31 Revised:2023-08-04 Published:2024-01-15 Online:2024-03-14

摘要:

为研究不同组织结构参数的纬编单面面料对运动休闲T恤热湿舒适性的影响,开发了13款聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯(PBT/PET)纬编单面针织物。通过对PBT/PET纬编单面针织物的透气率、透湿量、热阻、水分蒸发速率和液态水分管理能力这5个指标进行测试,探究织物组织结构和单丝线密度对织物厚度、面密度、孔隙率及热湿舒适性能的影响。在表征5个单项指标的基础上,运用灰色聚类分析对这13款纬编单面运动T恤面料的热湿舒适性进行综合评价。结果表明:织物的组织结构、厚度、单丝线密度、孔隙率以及面密度与织物的热湿舒适性能显著相关;组织结构为平纹、单面提花(1)和单珠地网眼的织物的热湿舒适性较好,因此更适合应用于运动休闲领域。

关键词: 纬编单面T恤面料, 热湿舒适性, 透气性, 透湿率, 聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯纤维

Abstract:

Objective Leisure, sports, and fitness have become a life fashion. Increasing number of people participate in sports and fitness, and as a result people's requirements for sports and leisure clothing fabrics are gradually changing. Lightweight, permeable, soft, and comfortable sports fabrics with features such as diverse styles, environmental friendliness, and health benefit are favored by consumers. As people pay more attention to human health and comfort, textiles with thermal and moisture comfort performance have gained attention in the global market, and attracted research attention. The wearing comfort is largely affected by the thermal and moisture comfort performance of the fabric. Air permeability, moisture permeability, thermal resistance, water evaporation rate, and liquid moisture management ability are considered to be the key factors affecting the wearer's thermal and moisture comfort performance.

Method In order to study the thermal and moisture comfort performance of sports and leisure T-shirt materials, 13 kinds of polybutylene terephthalate/polyethylene terephthalate(PBT/PET) weft knitted sports T-shirt fabrics with different structure parameters were developed. By using a fabricair permeability tester, fabric moisture permeability tester, thermal resistance, moisture resistance tester, and liquid moisture management tester, five indexes of the polybutylene terephthalate/polyethylene terephthalate 13 kinds of PBT/PET weft knitted sports T-shirt fabrics, which are air permeability, moisture permeability, thermal resistance, moisture evaporation rate, and liquid moisture management ability, were tested. The influences of fabric structure and monofilament size on fabric thickness, surface density, porosity, and thermal and moisture comfort performance were investigated. The thermal and moisture comfort performance of 13 kinds of weft knitted single-side knitted fabrics was evaluated through gray cluster analysis based on five individual indexes.

Results Using SPSS statistical software to conduct a one-way analysis of variance and correlation score, it was found that fabric structure and raw material monofilament size affected fabric porosity, and the correlation coefficients were 0.831 and 0.757 (p<0.05), respectively. Fabric thickness and surface density were also important factors affecting the porosity. The correlation coefficients were -0.768 and -0.710 (p<0.05). The microstructure and filament size were also found to affect the fabric's porosity, thickness, and surface density, and then affect the fabric's thermal and wet comfort properties such as air permeability, moisture permeability, thermal resistance, water evaporation rate, and liquid water management ability. The fabric structure was significantly correlated with the fabric's air permeability, moisture permeability, and thermal resistance, and the correlation coefficients were 0.783, 0.631, and 0.684, respectively. The thickness of fabrics was significantly correlated with the moisture permeability and thermal resistance of the fabrics, and the correlation coefficients were 0.771 and 0.761, respectively. The air permeability, water evaporation rate, and overall water management ability of fabrics were significantly correlated with the monofilament size, and the correlation coefficients were 0.544, -0.628, and 0.692, respectively. The porosity of fabrics was significantly correlated with the air permeability, thermal resistance, and overall water management ability of the fabrics, and the correlation coefficients were 0.654, 0.748, and 0.735, respectively. The surface density of fabrics was significantly correlated with the air permeability and overall water management ability of the fabrics, and the correlation coefficients were -0.688 and 0.709, respectively.

Conclusion The gray cluster analysis was adopeed to comprehensively evaluate the thermal and moisture comfort performance of the 13 weft knitted sports T-shirt fabrics, and it was concluded that the single-sided weft knitted sports T-shirt fabrics with single jersay, jacquard (1) and single-bead mesh had better thermal and moisture comfort performance, which was more suitable for the sports and leisure field.

Key words: weft-knitted single sports T-shirt fabric, thermal and moisture comfort, air permeability, moisture permeability, polybutylene terephthalate/polyethylene terephthalate fiber

中图分类号: 

  • TS186.2

图1

织物的编织图"

表1

织物基本规格参数"

织物
编号
织物组织 原料 单丝线密度/
tex
面密度/
(g·m-2)
厚度/mm 孔隙率/% 线圈密度/(线圈·(5 cm)-1)
纵密 横密
1# 平纹 8.89 tex(60 f) 0.15 112 0.43 80.7 100 170
2# 单珠地 8.89 tex(60 f) 0.15 123 0.47 80.6 90 190
3# 双珠地 8.89 tex(60 f) 0.15 109 0.62 87.0 100 150
4# 平纹 8.89 tex(96 f) 0.09 139 0.45 77.1 85 120
5# 平纹 8.89 tex(96 f) 0.09 112 0.46 82.0 85 115
6# 单面提花(1) 8.89 tex(96 f) 0.09 122 0.55 83.6 80 115
7# 单面提花(1) 8.89 tex(96 f) 0.09 121 0.52 82.8 85 115
8# 单面提花(2) 8.89 tex(96 f) 0.09 126 0.58 83.9 85 115
9# 单面提花(3) 8.89 tex(96 f) 0.09 141 0.49 78.7 100 110
10# 平纹+珠地(1) 8.89 tex(168 f) 0.05 148 0.41 73.3 130 180
11# 平纹+珠地(2) 8.89 tex(168 f) 0.05 142 0.43 75.5 125 200
12# 平纹+珠地(3) 8.89 tex(168 f) 0.05 146 0.42 74.3 130 180
13# 珠地+网眼 8.89 tex(168 f) 0.05 167 0.60 79.4 125 210

图2

织物的透气率"

图3

织物的透湿率"

图4

织物的热阻值"

图5

织物的水分蒸发速率"

表2

液态水分管理能力测试结果"

织物编号 浸水面(T)与
渗透面(B)
浸湿时间/
s
吸水速率/
(%·s-1)
最大浸湿半径/
mm
液态水扩散速度/
(mm·s-1)
单向传递指数/
%
OMMC值
1# T 3.86 96.80 18.0 4.02 152.82 0.66
B 0.33 77.70 21.5 15.93
2# T 13.30 30.63 16.5 6.50 889.28 0.94
B 0.29 128.87 17.0 16.54
3# T 2.71 85.75 21.5 5.34 584.29 0.97
B 0.29 499.17 21.5 17.22
4# T 2.18 51.55 25.0 5.63 765.10 0.90
B 0.31 62.43 25.5 16.55
5# T 2.14 54.65 25.0 7.17 601.78 0.89
B 0.30 58.80 25.0 16.98
6# T 2.67 52.36 22.0 4.94 616.00 0.88
B 0.28 57.87 21.0 16.92
7# T 2.32 55.97 23.5 5.27 596.61 0.88
B 0.31 58.27 23.0 16.32
8# T 2.95 50.39 20.5 4.21 722.86 0.89
B 0.31 59.76 20.5 15.39
9# T 2.75 52.51 21.5 4.78 636.59 0.88
B 0.32 56.05 21.0 15.36
10# T 2.40 83.17 27.5 5.72 -11.43 0.48
B 0.31 78.44 26.0 17.79
11# T 2.47 97.40 28.5 5.70 -71.15 0.45
B 0.31 78.83 25.5 17.57
12# T 2.68 96.14 27.0 5.37 -94.84 0.45
B 0.29 80.72 25.5 18.10
13# T 2.83 95.13 24.0 4.55 -78.17 0.44
B 0.30 72.09 24.5 17.10

图6

织物的整体水分管理能力"

[1] SENTHILKUMAR P, SRIDHARAN G. Recent development in textile for sportswear application[J]. Esrsa Publications, 2016, 44(8): 283-288.
[2] 孙岑文捷, 倪军, 张昭华, 等. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11):122-127,135.
SUN Cenwenjie, NI Jun, ZHANG Zhaohua, et al. Knitted sportswear ventilation design and the thermal comfort evaluation[J]. Journal of Textile Research, 2020, 41 (11): 122-127, 135.
[3] DI Domenico I, HOFFMANN S M, COLLINS P K. The role of sports clothing in thermoregulation, comfort, and performance during exercise in the heat: a narrative review[J]. Sports Medicine-Open, 2022, 8(1): 1-25.
doi: 10.1186/s40798-021-00382-y
[4] DAS A, ALAGIRUSAMY R, KUMAR P. Study of heat transfer through multilayer clothing assemblies: a theoretical prediction[J]. AUTEX Research Journal, 2011, 11(2): 54-60.
doi: 10.1515/aut-2011-110205
[5] ÖZDİL N, ANAND S. Recent developments in textile materials and products used for activewear and sportswear[J]. Electronic Journal of Vehicle Technologies, 2014, 8: 68-83.
[6] GAO S, CUI Y, YAO W, et al. Analysis of thermal and wet comfort properties of hygroscopic and exothermic knitted fabrics[J]. Textile Research Journal 2022, 92(13/14): 2327-2339.
doi: 10.1177/00405175221076030
[7] LEI Z. Review of application of thermal manikin in evaluation on thermal and moisture comfort of clothing[J]. Journal of Engineered Fibers and Fabrics, 2019, 14: 1-10.
[8] CHEN Q, TANG K P M, MA P, et al. Thermophysiological comfort properties of polyester weft-knitted fabrics for sports T-shirt[J]. The Journal of the Textile Institute, 2017, 108(8): 1421-1429.
doi: 10.1080/00405000.2016.1255122
[9] TEYEME Y, MALENGIER B, TESFAYE T, et al. Comparative analysis of thermophysiological comfort-related properties of elastic knitted fabrics for cycling sportswear[J]. Materials, 2020. DOI:10.3390/ma13184024.
[10] KUMAR C B S, KUMAR B S. Study on thermal comfort properties of Eri silk knitted fabrics for sportswear application[J]. Journal of Natural Fibers, 2021, 19(14): 1-12.
doi: 10.1080/15440478.2020.1726247
[11] 钱娟, 谢婷, 张佩华, 等. 聚乙烯针织物的热湿舒适性能[J]. 纺织学报, 2022, 43(7):60-66.
QIAN Juan, XIE Ting, ZHANG Peihua, et al. Thermal and wet comfort properties of polyethylene knitted fabrics[J]. Journal of Textile Research, 2022, 43(7): 60-66.
doi: 10.1177/004051757304300111
[12] KADOGLU H, DIMITROVSKI K, MARMARAL A, et al. Investigation of elasticised woven fabric characteristics using PBT filament yarns[J]. AUTEX Research Journal, 2016, 16(2): 109-117.
doi: 10.1515/aut-2015-0025
[13] ZUPIN Ž, DIMITROVSKI K, HLADNIK A, et al. Elongation properties of woven fabrics with incorporated PBT yarns[J]. The Journal of The Textile Institute, 2022, 113(5): 846-856.
doi: 10.1080/00405000.2021.1907971
[14] 陈晴, 冒海文, 马丕波, 等. PBT和PET交织经编织物的染整工艺对织物弹性的影响[J]. 纺织导报, 2018(1):55-58.
CHEN Qing, MAO Haiwen, MA Pibo, et al. Effect of dyeing and finishing process of PBT and PET interwoven warp knitted fabrics on fabric elasticity [ J ]. China Textile Leader, 2018 (1): 55-58.
[15] TIAN J, YU B, YU D, et al. Missing data analyses: a hybrid multiple imputation algorithm using gray system theory and entropy based on clustering[J]. Applied Intelligence, 2014, 40(2): 376-388.
doi: 10.1007/s10489-013-0469-x
[16] 王厉冰, 胡心怡, 齐素祯. 灰色聚类分析在纺织材料性能综合评价中的应用[J]. 天津工业大学学报, 2006, 25(3):23-26.
WANG Libing, HU Xinyi, QI Suzhen. Application of grey cluster analysis in comprehensive evaluation of textile material properties[J]. Journal of Tianjin Polytechnic University, 2006, 25(3):23-26.
[1] 王兆芳, 张辉, 丁波, 张淼. 文胸罩杯透湿率测定新方法[J]. 纺织学报, 2024, 45(01): 176-184.
[2] 王兆芳, 丁波, 张辉, 陈思璘. 青年女性胸部出汗分布和出汗率的测定[J]. 纺织学报, 2023, 44(12): 145-152.
[3] 王予涛, 丛洪莲, 顾洪阳. 纬编成形护膝结构设计及其热湿舒适性[J]. 纺织学报, 2023, 44(10): 68-74.
[4] 赵辰, 王敏, 李俊. 个体降温服优化设计对其降温效果影响的研究进展[J]. 纺织学报, 2023, 44(09): 243-250.
[5] 丁雪婷, 王建萍, 潘婷, 姚晓凤, 袁鲁宁. 仿蜻蜓翅膀结构的冬季针织面料研发及其性能[J]. 纺织学报, 2023, 44(09): 75-83.
[6] 张露杨, 宋海波, 孟晶, 殷兰君, 卢业虎. 棉纱布被保暖性能的影响因素[J]. 纺织学报, 2023, 44(07): 79-85.
[7] 陈佳慧, 梅涛, 赵青华, 尤海宁, 王雯雯, 王栋. 热湿舒适性智能织物的研究进展[J]. 纺织学报, 2023, 44(01): 30-37.
[8] 刘亚, 程可为, 赵义侠, 于雯, 张淑苹, 钱子茂. 热塑性聚氨酯熔喷非织造材料制备与性能[J]. 纺织学报, 2022, 43(11): 88-93.
[9] 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150.
[10] 江燕婷, 严庆帅, 辛斌杰, 高琮, 施楣梧. 纺织品单向导水性能测试方法分析[J]. 纺织学报, 2021, 42(05): 51-58.
[11] 王莉, 张冰洁, 王建萍, 刘莉, 杨雅岚, 姚晓凤, 李倩文, 卢悠. 基于仿生学的冬季针织运动面料开发与性能评价[J]. 纺织学报, 2021, 42(05): 66-72.
[12] 杨阳, 俞欣, 章为敬, 张佩华. 针织面料凉爽性能的评价方法及其预测模型[J]. 纺织学报, 2021, 42(03): 95-101.
[13] 董甜甜, 王蕾, 高卫东. 防羽面料孔径及分布特征与透气性和防钻绒性的关系[J]. 纺织学报, 2020, 41(12): 49-53.
[14] 孙岑文捷, 倪军, 张昭华, 董婉婷. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127.
[15] 刘捷, 仝胜录, 李小端, 刘立国, 何加浩, 李文斌, 熊日华. 织物基载体在含盐废水蒸发处理中的应用[J]. 纺织学报, 2020, 41(08): 81-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!