纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 126-133.doi: 10.13475/j.fzxb.20231008901

• 纺织工程 • 上一篇    下一篇

三维一体针织结构超级电容器的储能性能

陈露1, 石宝1,2, 魏赛男1,2, 贾立霞1,2, 阎若思1,2()   

  1. 1.河北科技大学 纺织服装学院, 河北 石家庄 050018
    2.河北科技大学河北省纺织服装工程技术创新中心, 河北 石家庄 050018
  • 收稿日期:2023-10-26 修回日期:2023-12-26 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 阎若思(1988—),女,教授,博士。主要研究方向为功能性纺织复合材料。E-mail:ruosi.yan@hebust.edu.cn
  • 作者简介:陈露(1999—),女,硕士生。主要研究方向为智能纺织品。
  • 基金资助:
    国家自然科学基金青年科学基金项目(12202133);河北科技大学基本科研项目国家基金一般专项项目(2023XLM004);河北省高等学校科学研究计划重点项目(ZD2022025);河北省青年拔尖人才支持计划项目(〔2018〕-27);石家庄市科技计划项目(221190171A)

Energy storage performance of three-dimensional integrated knitted supercapacitor

CHEN Lu1, SHI Bao1,2, WEI Sainan1,2, JIA Lixia1,2, YAN Ruosi1,2()   

  1. 1. College of Textile and Garments, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
    2. Hebei Technology Innovation Center for Textile and Garment, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
  • Received:2023-10-26 Revised:2023-12-26 Published:2024-02-15 Online:2024-03-29

摘要:

为提高能源储存器件的柔韧性及安全性,开发柔性可穿戴三维一体储能设备。制备二维过渡金属碳化物Ti3C2Tx(MXene)/锌(Zn)三维一体针织结构超级电容器(ZSC)。通过透射电子显微镜和X射线衍射仪对MXene纳米片微观形貌和涂层情况进行表征,利用电化学工作站探究其储能性能。结果表明,ZSC具有优异的倍率性能,在电流密度为1 mA/cm2时,ZSC面积电容为345.56 mF/cm2。分析超级电容器的储能机制为负极侧的可逆Zn沉积/剥离和正极离子吸附/解吸。经过10 000次充放电循环,ZSC仍具有93.51%的电容保持率和92.43%的库伦效率,且能量密度为25.05 μW·h/cm2时,功率密度为10 mW/cm2。ZSC在空气中放置30 d,其储能性能保持稳定,表现出良好的电化学耐久性与稳定性。

关键词: 针织, 超级电容器, 二维过渡金属碳化物, 智能可穿戴

Abstract:

Objective In recent years, the development of compatible energy sources by combining wearable technology and textiles to make supercapacitors by replacing traditional forms of batteries with energy storage fabrics has gained wide attentions. The three-dimensional integrated fabrics possess inherent porous structures for effective attachment of active materials. The two-dimensional transition metal carbide Ti3C2Tx (MXene)/zinc (Zn) three-dimensional integrated knitted structure of the flexible supercapacitor (ZSC) was designed and prepared, combining flexibility of the three-dimensional fabrics with high electrical conductivity of the MXene so as to effectively improve its energy storage performance.

Method Monolayer Ti3C2Tx(MXene) nanosheets were prepared by selective extraction of element "A" in MAX-Ti3AlC2 phase using LiF and HCl. By the constant potential electrodeposition method, Zn monomers were electrodeposited on the surface of silver-plated nylon (SPN) fibers as the anode, and SPN yarns coated with MXene was used as the cathode. The functional fibers were weft knitted using STOLL computerized flat knitting machine. Cyclic voltammetry, constant current charge/discharge and electrochemical impedance methods were used to test the storage performance and durability of three-dimensional integrated knitted supercapacitors at the electrochemical workstation.

Results The morphological characteristics of prepared MXene nanosheets and the energy storage performance of Ti3C2Tx (MXene)/Zn three-dimensional integrated knitted flexible supercapacitors were comprehensively investigated. The results showed that the prepared MXene nanosheets were in forms of monolayer structure and hexagonal lattice, which had a 2-D layered structure with a thickness of 1.95 nm and a size of 1.4 μm. The lamellar structure with the main components of C, O and Ti was coated with MXene coated with silver-plated nylon fibers (SPN) as the cathode, and zinc monomers were electrodeposited on the SPN fibers as the anode. It was tested by cyclic voltammetry. By galvanostatic charge-discharge test, it is shown good linearity and remarkable symmetrical quasi-triangular charge-discharge curves, indicating a high coulombic efficiency and a capacitance retention of 52.18% even at higher current densities. The investigation revealed reversible Zn deposition/stripping at its cathode and anode ion adsorption/desorption.

The supercapacitor exhibited a low resistance (Rs) of 6.74 Ω determined by the internal resistance of the electrode material and the electrolyte solution, and a charge transfer resistance (Rct) of about 8 Ω. The energy density of 47.99 μW·h/cm2 (25.04 μW·h/cm2) and power density of 0.5 mW/cm2 (10 mW/cm2) in this study is better than the same type of reports. After 10 000 cycles of charging and discharging, it was found to have a capacitance retention of 93.51% and a coulombic efficiency of 92.43%. There was no significant change in the energy storage performance after leaving the supercapacitor in the air for 30 days. When two 1 cm2 supercapacitor fabrics were connected in series, a small electric meter could be lit up. The capocitance retention was 94.1% after 10 h of placement, with good resistance to self-discharge.

Conclusion The three-dimensional integrated knitted structure was prepared to effectively improve the energy storage performance of the supercapacitors, and its inherent porous structure effectively attracted the active material to achieve high ion diffusion speed and charge-discharge rate. The microstructure and chemical composition of MXene were discussed and analyzed. Electrochemical testing revealed that the area capacitance was 345.56 mF/cm2 at a current density of 1 mA/cm2, 93.51% capacitance retention and 92.43% coulombic efficiency after 10 000 charge-discharge cycles, and a power density of 10 mW/cm2 at an energy density of 25.05 μW·h/cm2. The three-dimensional knitted supercapacitor has good durability. It has high voltage retention of 94.1% after 10 h in air. The promising three-dimensional integrated knitted structure for flexible supercapacitors provides a reliable and efficient power supply for wearable electronic devices.

Key words: knitting, supercapacitor, two-dimensional transition metal carbide, smart wearable

中图分类号: 

  • TS181.8

图1

MXene/Zn三维一体针织结构超级电容器示意图"

图2

MXene纳米片的TEM照片"

图3

单层MXene纳米片的AFM图像 单位:μm。"

图4

MXene/SPN的EDS图像(×2 500)"

图5

MXene/SPN和Zn/SPN纱线的XRD图像"

图6

涂层SPN纱线的SEM照片"

图7

针织物表面平针结构的SEM照片"

图8

循环伏安曲线"

图9

恒流充放电曲线"

表1

不同电流密度下ZSC的面积电容及电容保持率"

电流密度/
(mA·cm-2)
面积电容/
(mF·cm-2)
电容保持
率/%
1 345.56 100
3 270.36 78.24
5 244.79 70.84
7.5 236.72 68.5
10 222.28 64.32
20 180.32 52.18

图10

ZSC的储能机制"

图11

ZSC的交流阻抗测试"

图12

ZSC的功率密度-能量密度曲线"

图13

ZSC的电容保持率及库伦效率曲线"

图14

ZSC在空气中放置30 d前后储能性能"

图15

ZSC的自放电曲线"

[1] XIONG Y, HAN J, WANG Y, et al. Emerging iontronic sensing: materials, mechanisms, and applications[J]. Research, 2022, 50; 479-488.
[2] 娄辉清, 朱斐超, 李磊磊, 等. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40.
LOU Huiqing, ZHU Feichao, LI Leilei, et al. Preparation and electrochemical performance of composite carbon nanotube/Ni/polyanilline fibrous supercapacitor[J]. Journal of Textile Research, 2022, 43(11): 35-40.
[3] 聂文琪, 孙江东, 许帅, 等. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(7): 200-206.
NIE Wenqi, SUN Jiangdong, XU Shuai, et al. Progress on flexible textile fibre-based supercapacitors[J]. Journal of Textile Research, 2022, 43(7): 200-206.
[4] CHEN A, WANG C, ABU O A, et al. MXene@nitrogen-doped carbon films for supercapacitor and piezoresistive sensing applications[J]. Composites Part A: Applied Science and Manufacturing, 2022.DOI:10.1016/j.compositesa.2022.107174.
[5] YUAN M, ZHANG X, WANG J, et al. Recent progress of energy-storage-device-integrated sensing systems[J]. Nanomaterials (Basel), 2023, 4(12): 645.
[6] ZHU W B, LUO H S, TANG Z H, et al. Ti3C2Tx MXene/Bamboo fiber/PDMS pressure sensor with simultaneous ultrawide linear sensing range, superb environmental stability, and excellent biocompati-bility[J]. ACS Sustainable Chemistry & Engineering, 2022, 10 (11): 3546-3556.
[7] GUNASEKARAN S S, VEERALINGAM S, BADHULIKA S, et al. "One for two" strategy of fully integrated textile based supercapacitor powering an ultra-sensitive pressure sensor for wearable applications[J]. Journal of Energy Storage, 2022. DOI:10.1016/j.est.2022.103994.
[8] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253.
doi: 10.1002/adma.v23.37
[9] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81.
doi: 10.1038/nature13970
[10] HE J, SHI F, LIU Q, et al. Wearable superhydrophobic PPy/MXene pressure sensor based on cotton fabric with superior sensitivity for human detection and information transmission[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022.DOI:10.1016/j.colsurfa.2022.128676.
[11] CHEN C, CHEN L, WU Z, et al. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors[J]. Materials Today, 2020; 32: 84-93.
doi: 10.1016/j.mattod.2019.10.025
[12] WEN J, XU B, ZHOU J. Towards 3D knitted-fabric derived supercapacitors with full structural and functional integrity of fiber and electroactive mater-ials[J]. Journal of Power Sources, 2020.DOI:10.1016/j.jpowsour.2020.228559.
[13] ZHANG Y, WANG L, ZHAO L, et al. Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus @ MXene thin-films[J]. Advanced Materials, 2021.DOI:10.1002/adma.202007890.
[14] XU S K, DALL'AGNESEA Y, WEI G, et al. Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors[J]. Nano Energy, 2018, 50, 479-488.
doi: 10.1016/j.nanoen.2018.05.064
[15] PENG Y Y, AKUZUM B, KURRA N. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage[J]. Energy Environmental Science, 2016, 9: 2847-2854.
doi: 10.1039/C6EE01717G
[1] 常辰玉, 王雨薇, 原旭阳, 刘锋, 卢致文. 基于交织点改进弹簧-质点模型的纬编针织物动态变形模拟[J]. 纺织学报, 2024, 45(01): 99-105.
[2] 孙磊, 屠佳佳, 毛慧敏, 王俊茹, 史伟民. 针织智能车间自动换筒任务调度技术[J]. 纺织学报, 2023, 44(12): 189-196.
[3] 盛晓超, 刘泽旭, 胥光申, 石英男. 线性磁悬浮织针驱动系统运动控制与实验分析[J]. 纺织学报, 2023, 44(12): 197-204.
[4] 管图祥, 吴健, 暴宁钟. 微流控纺丝制备石墨烯纤维基柔性超级电容器的研究进展[J]. 纺织学报, 2023, 44(12): 205-215.
[5] 贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光, 李时伟. 基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能[J]. 纺织学报, 2023, 44(10): 113-119.
[6] 戴宁, 梁汇江, 胡旭东, 陆哲昊, 徐开心, 袁嫣红, 屠佳佳, 曾志发. 纬编针织机编织过程中三角振动响应特性[J]. 纺织学报, 2023, 44(10): 181-187.
[7] 李玉贤, 巫晓雯, 吴光军, 丛洪莲. 针织毛衫版片的参数化设计模型与实现[J]. 纺织学报, 2023, 44(09): 168-174.
[8] 任国栋, 屠佳佳, 李杨, 邱子安, 史伟民. 基于轻量化网络和知识蒸馏的纱线状态检测[J]. 纺织学报, 2023, 44(09): 205-212.
[9] 丁雪婷, 王建萍, 潘婷, 姚晓凤, 袁鲁宁. 仿蜻蜓翅膀结构的冬季针织面料研发及其性能[J]. 纺织学报, 2023, 44(09): 75-83.
[10] 李露红, 赵博宇, 丛洪莲. 复合结构经编针织电容式传感器设计及其性能[J]. 纺织学报, 2023, 44(08): 88-95.
[11] 孙园园, 张琦, 张燕婷, 左露娇, 丁宁宇. 三维通孔结构三色三贾卡提花间隔鞋材的研发[J]. 纺织学报, 2023, 44(07): 110-115.
[12] 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221.
[13] 王开, 王瑾, 牛丽, 陈超余, 马丕波. 棉/不锈钢丝包芯纱针织电路制备及其导电稳定性能[J]. 纺织学报, 2023, 44(07): 64-71.
[14] 俞旭良, 丛洪莲, 孙菲, 董智佳. 仿猪笼草口缘结构功能针织物的设计与应用[J]. 纺织学报, 2023, 44(07): 72-78.
[15] 史伟民, 简强, 李建强, 汝欣, 彭来湖. 基于非线性扩散和多特征融合的提花针织物疵点检测[J]. 纺织学报, 2023, 44(07): 86-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!