纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 142-152.doi: 10.13475/j.fzxb.20230706401

• 染整工程 • 上一篇    下一篇

再生角蛋白凝胶对纺织退浆废水中浆料分子的吸附性能

杨美慧1,2, 李博1,2,3, 沈艳琴1,2(), 武海良1,2   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
    3.苏州大学 纺织行业丝绸功能材料与技术重点实验室, 江苏 苏州 215123
  • 收稿日期:2023-07-26 修回日期:2023-11-01 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 沈艳琴(1963—),女,教授,硕士。主要研究方向为新材料的开发与应用。E-mail:shenyanqin1208@126.com
  • 作者简介:杨美慧(1998—),女,硕士生。主要研究方向为再生生物质材料研发与应用。
  • 基金资助:
    陕西省自然科学基础研究计划项目(2023-JC-QN-0423);中国纺织工业联合会应用基础研究项目(J202203);纺织行业丝绸功能材料与技术重点实验室开放课题项目(SDHY2235);陕西省教育厅科研计划项目(23JY031)

Sorption properties of regenerated keratin gels to size macromolecules in textile desizing wastewater

YANG Meihui1,2, LI Bo1,2,3, SHEN Yanqin1,2(), WU Hailiang1,2   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    3. China National Textile and Apparel Council Key Laboratory for Silk Functional Materials and Technology, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2023-07-26 Revised:2023-11-01 Published:2024-02-15 Online:2024-03-29

摘要:

为实现废弃角蛋白纤维资源的高值化循环利用,在采用“还原预处理-甲酸”溶解法获取角蛋白多肽并引入α-硫辛酸进行化学改性基础上,制备再生凝胶材料用于纺织退浆废水中浆料分子的吸附处理。借助扫描电子显微镜、傅里叶红外光谱等测试技术对角蛋白凝胶的结构和性能进行表征。针对聚乙烯醇(PVA)和淀粉2种浆料,探究凝胶对不同浆料分子的吸附规律及机制。结果表明:角蛋白凝胶具有均匀的三维孔隙结构,其化学组成和官能团结构与原纤维基本一致,且结晶程度较高;该凝胶对溶液体系中PVA分子的吸附量和去除率分别为 16.278 mg/g 和30.013%,对淀粉浆料则可达到133.234 mg/g和28.868%;此外,吸附动力学和热力学研究显示,角蛋白凝胶对2种浆料的吸附规律均符合准二级动力学模型,其中对PVA分子主要为物理吸附作用,而对淀粉则可能存在化学吸附效果。

关键词: 角蛋白凝胶, 天然生物质, 生物吸附剂, 纺织退浆废水, 染料, 吸附动力学

Abstract:

Objective The effective recycling of waste protein fiber resources is one of the important aspects to achieve green and sustainable development of textile industry. In this study, regenerated keratin gels were prepared from waste wool fibers and applied to the sorption treatment of textile desizing wastewater. By exploring the sorption performance and mechanism of keratin gels to two common types of sizes, the research foundation is provided for promoting the industrialized application of this method.

Method On the basis of the preliminary study, the keratin polypeptides were extracted by ″reducing agent-formic acid method″, and then the polypeptides were modified by α-lipoic acid. These modified keratin polypeptides were prepared for creating regenerated gel materials by dialysis and freeze-drying. The sorption properties of the keratin gels to polyvinyl alcohol (PVA) size and starch size were studied, and the sorption mechanism was discussed by using the sorption kinetics and sorption isotherm model.

Results The experiment was based on the "reduction pretreatment-formic acid dissolution method", by adding the modifier α-lipoic acid for grafting modification, and then by "dialysis-freezing" method to prepare the keratin gel material. The photograph of the gel structure illustrated that the keratin gel was relatively fluffy and dense, and the microscopic morphology presented the characteristics of uniform pores with the pore size of about 3-4 μm. In comparison with the chemical structures of wool, the keratin gel material retained the basic chemical structure of keratin molecule, in which the keratin amide II band was blueshifted due to the transformation of the aggregation state of polypeptide molecules in the gel. Compared with the sulfur content on the surface of wool and keratin gel, the keratin gel was located at 169.58 eV and 170.68 eV. The results indicated that α-lipoic acid was effectively grafted to the sulfhydryl group on the keratin polypeptide macromolecular chain. In addition, the peak intensity of the gel at 21° increased significantly than those of the peak crystallinity of wool, and the test results exhibited that the molecular structure of the polypeptide modified by α-lipoic acid was optimized to a certain extent. The adsorption capacity and removal rate of keratin gel on PVA reached 16.278 mg/g and 30.013%, respectively, and the adsorption capacity and removal rate of starch slurry are 133.234 mg/g and 28.868%. Moreover, the kinetic model study showed that the adsorption of PVA and starch by keratin gel was in accordance with the quasi-secondary kinetic model, and the fit was close to 1. Thermodynamic model analysis presented that the adsorption of keratin for PVA was consistent with Langmuir model, and that starch was more suitable for the Freundlich model.

Conclusion The keratin gel prepared in this study has uniform physical morphology and abundant pore structure, and its chemical properties are basically consistent with wool. The keratin gels have good sorption performance to PVA and starch size. Among them, the action mode of gels to PVA is mainly physical adsorption, while there may be chemical effects on starch.

Key words: keratin gel, natural biomass, biosorbent, textile desizing wastewater, dye, sorption kinetics

中图分类号: 

  • TS199

图1

再生角蛋白凝胶制备工艺流程示意图"

图2

角蛋白凝胶外观形貌及不同放大倍数下的SEM照片"

图3

羊毛纤维与角蛋白凝胶红外光谱图"

图4

羊毛及角蛋白凝胶XPS谱图"

图5

羊毛纤维及角蛋白凝胶XRD谱图"

图6

不同浆料溶液质量浓度与吸光度对应关系拟合曲线"

图7

角蛋白凝胶在不同条件下对PVA浆料分子的吸附性能"

图8

角蛋白凝胶在不同条件下对淀粉浆料分子的吸附性能"

图9

角蛋白凝胶对PVA的准一级和准二级吸附动力学拟合曲线"

图10

角蛋白凝胶对淀粉的准一级和准二级吸附动力学拟合曲线"

表1

对PVA及淀粉吸附动力学参数拟合结果"

吸附浆料
种类
准一级动力学参数 准二级动力学参数
K1 q1 R 1 2 K2 q2 R 2 2
PVA -0.143 200 0.826 894 0.295 75 -0.183 25 11.252 40 0.999 88
淀粉 0.004 145 33.385 660 0.978 01 0.000 88 63.171 19 0.995 46

图11

采用Langmuir和freundlich模型拟合的角蛋白凝胶对PVA的吸附等温线"

图12

采用Langmuir和freundlich模型拟合的角蛋白凝胶对淀粉的吸附等温线"

表2

对PVA及淀粉吸附等温线参数拟合结果"

吸附浆
料种类
Langmuir Freundlich
qm KL R2 RMSE/10-2 n KF R2 RMSE/10-3
PVA 21.753 0.245 0 0.954 19 1.178 3.298 5 6.671 1 0.910 62 4.14
淀粉 -6.740 -0.123 6 0.529 18 0.144 0.877 1 0.455 2 0.995 12 9.967
[1] 杜曼宜, 欧阳迈, 苏荣荣, 等. 废弃动物毛资源化利用进展[J]. 皮革与化工, 2020, 37(2):23-27.
DU Manyi, OUYANG Mai, SU Rongrong, et al. Development of resource utilization of abandoned animal hair[J]. Leather & Chemical Industry, 2020, 37(2):23-27.
[2] 杨旭红, 钟林钧, 陈博, 等. 废弃羊毛中蛋白质提取初探[J]. 毛纺科技, 2004(4):14-16.
YANG Xuhong, ZHONG Linjun, CHEN Bo, et al. Preliminary study on protein extraction from waste wool[J]. Wool Textile Journal, 2004(4):14-16.
[3] 张念荣, 王全杰, 张琦, 等. 废弃羊毛角蛋白的资源化利用研究进展[J]. 西部皮革, 2012, 34(24):29-32.
ZHANG Nianrong, WANG Quanjie, ZHANG Qi, et al. Research progress on utilization of waste wool keratin[J]. Western Leather, 2012, 34(24):29-32.
[4] 邹蝶, 王巧娥, 程海明. 提取方法对羊毛角蛋白结构与性能的影响[J]. 皮革科学与工程, 2023, 33(2):21-27.
ZOU Die, WANG Qiao'e, CHENG Haiming. Effect of extraction method on the structure and properties of wool keratin[J]. Leather Science and Engineering, 2023, 33(2):21-27.
[5] 周莹莹, 孙润军. 羊毛角蛋白的提取及应用研究进展[J]. 染整技术, 2022, 44(11):13-15.
ZHOU Yingying, SUN Runjun. Research progress in application and extraction of wool keratin[J]. Dyeing and Finishing Technology, 2022, 44(11):13-15.
[6] 高阳. 蛋白基水凝胶的制备及其柔性传感应用的研究[D]. 长春: 长春工业大学, 2021:1-141.
GAO Yang. Preparation of protein-based hydrogels and their applications in flexible sensors[D]. Changchun: Changchun University of Technology, 2021:1-141.
[7] 孙晓霞, 鲍艺, 彭黔荣, 等. 角蛋白生物材料在创伤愈合中的应用研究进展[J]. 材料导报, 2020, 34(7):7161-7167.
SUN Xiaoxia, BAO Yi, PENG Qianrong, et al. Advances on application of keratin biomaterials in wound healing[J]. Materials Reports, 2020, 34(7):7161-7167.
[8] 孙小娟. 羊毛角蛋白/氧化石墨烯复合材料的制备及吸附性能研究[D]. 北京: 北京服装学院, 2019:1-62.
SUN Xiaojuan. Preparation and adsorption properties of wool keratin/graphene oxide composites[D]. Beijing: Beijing Institute of Fashion Technology, 2019:1-62.
[9] 郑顺姬, 隋智慧, 曹向禹. 角蛋白基吸附剂的研究进展[J]. 皮革科学与工程, 2022, 32(1):46-52.
ZHENG Shunji, SUI Zhihui, CAO Xiangyu. Progress in research of keratin-based adsorbent[J]. Leather Science and Engineering, 2022, 32(1):46-52.
[10] 李小倩. 蛋白质基重金属离子吸附材料的构筑及吸附性能研究[D]. 郑州: 中原工学院, 2021:1-73.
LI Xiaoqian. Study on the construction and adsorption performance of protein-based heavy metal ion adsorption materials[D]. Zhengzhou: Zhongyuan University of Technology, 2021:1-73.
[11] 谭杨, 杨笑妮, 辛艺, 等. 温敏型Keratin/PNIPAM水凝胶的制备及其对重金属离子的吸附性能和机理研究[J]. 分析试验室, 2022, 41(6):685-690.
TAN Yang, YANG Xiaoni, XIN Yi, et al. Preparation of thermosensitive Keratin/PNIPAM hydrogel and its adsorption property and mechanism for heavy metal ions[J]. Chinese Analysis Laboratory, 2022, 41(6):685-690.
[12] LAGO D L G, FELISBERTI I M. PH and thermo-responsive hybrid hydrogels based on PNIPAAM and keratin[J]. European Polymer Journal, 2020. DOI:10.1016/j.eurpolymj.2020.109538.
[13] VILLANUEEVA M E, PUCA M, BRAVO J P, et al. Dual adsorbent-photocatalytic keratin-TiO2 nanocomposite for trimethoprim removal from wast-ewater[J]. New Journal of Chemistry, 2020, 44(26): 10964-10972.
doi: 10.1039/D0NJ02784G
[14] 唐炬. 浅探退浆废水的处理方法及工艺[J]. 精细与专用化学品, 2022, 30(12):28-33.
TANG Ju. Analysis of desizing waste water treatment method and process[J]. Fine and Specialty Chemicals, 2022, 30(12):28-33.
[15] 吕小平. 退浆高浓度废水预处理节能降耗技术研究[J]. 节能与环保, 2022(11):63-65.
LÜ Xiaoping. Study on energy saving and consumption reduction technology of desizing high concentration wastewater pretreatment[J]. Energy Conservation and Environmental Protection, 2022(11):63-65.
[16] 孙将皓, 邵彦峥, 魏春艳, 等. 海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能[J]. 纺织学报, 2023, 44(4):24-31.
SUN Jianghao, SHAO Yanzheng, WEI Chunyan, et al. Preparation and adsorption analysis of sodium alginate/graphene oxide microporous aerogel fiber[J]. Journal of Textile Research, 2023, 44(4):24-31.
doi: 10.1177/004051757404400105
[17] 王双双, 季志浩, 盛国栋, 等. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(9):156-166.
WANG Shuangshuang, JI Zhihao, SHENG Guodong, et al. Dye and heavy metal adsorption performance of zero-valent iron/graphene oxide blend absorbent[J]. Journal of Textile Research, 2022, 43(9):156-166.
[18] 程绿竹, 王宗乾, 王邓峰, 等. 高中空生物质活性碳纤维制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2021, 42(2):129-134.
CHENG Lüzhu, WANG Zongqian, WANG Dengfeng, et al. Preparation of highly hollow biomass-based activated carbon fiber and its adsorption property to methylene blue[J]. Journal of Textile Research, 2021, 42(2):129-134.
[19] 李博, 姚金波, 牛家嵘, 等. 采用还原剂-甲酸法溶解制备羊毛角蛋白质溶液[J]. 纺织学报, 2019, 40(3):1-7.
LI Bo, YAO Jinbo, NIU Jiarong, et al. Preparation of wool keratin solution by reducing agent-formic acid process[J]. Journal of Textile Research, 2019, 40(3):1-7.
doi: 10.1177/004051757004000101
[20] LI Bo, SUN Yanli, YAO Jinbo, et al. An environment-friendly chemical modification method for thiol groups on polypeptide macromolecules to improve the performance of regenerated keratin materials[J]. Materials & Design, 2022, 217: 110611.
[21] 杜昭. 含PVA印染退浆废水处理工艺研究[D]. 郑州: 郑州大学, 2020:1-88.
DU Zhao. Study on treatment technology of dyeing and printing desizing wastewater containing PVA[D]. Zhengzhou: Zhengzhou University, 2020:1-88.
[22] 韩芳, 耿翠玉, 贾琰, 等. 退浆废水中聚乙烯醇的分析检测研究[J]. 干旱环境监测, 2017, 31(1):1-4,24.
HAN Fang, GENG Cuiyu, JIA Yan, et al. Research on the analytic technique of polyvinyl alcohol in desizing wastewater[J]. Arid Environmental Monitoring, 2017, 31(1):1-4,24.
[23] 顾润南, 林苗. 退浆废水中聚乙烯醇(PVA)含量的测定[J]. 东华大学学报(自然科学版), 2005(2):106-109.
GU Runnan, LIN Miao. Determination of PVA content in desizing wastewater[J]. Journal of Donghua University(Natural Science Edition), 2005(2):106-109.
[24] 洪特嘉. 角蛋白的绿色提取及其水凝胶材料的制备与评价[D]. 上海: 东华大学, 2017:1-74.
HONG Tejia. Green extraction of keratin and preparation and evaluation of keratin hydrogel[D]. Shanghai: Donghua University, 2017:1-74.
[25] 许梦媛, 刘让同, 李亮, 等. 聚乙烯醇/羊毛角蛋白复合水凝胶的制备与表征[J]. 印染, 2022, 48(4):17-21.
XU Mengyuan, LIU Rangtong, LI Liang, et al. Preparation and characterization of polyvinyl alcohol/wool keratin composite hydrogel[J]. China Dyeing & Finishing, 2022, 48(4):17-21.
[26] RAJABINEJAD H, ZOCCOLA M, PATRUCCO A, et al. Physicochemical properties of keratin extracted from wool by various methods[J]. Textile Research Journal, 2018, 88(21): 2415-2424.
doi: 10.1177/0040517517723028
[27] SHAVANDI A, CARNE A, BEKHIT A A, et al. An improved method for solubilisation of wool keratin using peracetic acid[J]. Journal of Environmental Chemical Engineering, 2017, 5(2): 1977-1984.
doi: 10.1016/j.jece.2017.03.043
[28] WANG L, NIE Y, ZHANG X, et al. Synergistic effects of cosolvents on the dissolution of wool keratin using ionic liquids[J]. Chemical Engineering & Technology, 2016, 39(5): 979-986.
doi: 10.1002/ceat.v39.5
[1] 范博, 吴伟, 王健, 徐红, 毛志平. 分散染料在超临界CO2流体染色聚酯纤维中的扩散行为[J]. 纺织学报, 2024, 45(02): 134-141.
[2] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[3] 葛怀富, 吴伟, 王健, 徐红, 毛志平. 5-(二甲氨基)-2-甲基-5-氧戊酸甲酯在超临界二氧化碳流体染色中的应用[J]. 纺织学报, 2024, 45(01): 120-127.
[4] 颜素崟, 周丽春, 郑庭, 金福江. 蒽醌型染料分子羟基最优取代位置的多目标优化设计方法[J]. 纺织学报, 2024, 45(01): 128-135.
[5] 寿晨超, 娜仁高娃, 高素芸, 刘剑, 赵丰. 天然染料质谱数据库的建立与应用[J]. 纺织学报, 2023, 44(11): 120-131.
[6] 黄彪, 郑莉娜, 秦妍, 程羽君, 李成才, 朱海霖, 刘国金. 多孔型TiO2微粒的制备及其对离子型染料的吸附[J]. 纺织学报, 2023, 44(11): 167-175.
[7] 姜绍华, 梁帅童, 裴刘军, 张红娟, 王际平. 基于概率密度函数的织物染色侵入动力学分析[J]. 纺织学报, 2023, 44(10): 90-97.
[8] 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157.
[9] 邵彦峥, 孙将皓, 魏春艳, 吕丽华. 棉秆皮微晶纤维素/改性壳聚糖吸附纤维制备与性能[J]. 纺织学报, 2023, 44(08): 18-25.
[10] 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150.
[11] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
[12] 吴伟, 纪柏林, 毛志平. 活性及分散染料染色新技术[J]. 纺织学报, 2023, 44(05): 1-12.
[13] 王国琴, 付小航, 朱羽科, 吴礼光, 王挺, 蒋孝佳, 陈华丽. 可见光响应的介孔TiO2光降解罗丹明B机制及其降解途径[J]. 纺织学报, 2023, 44(05): 155-163.
[14] 艾丽, 朱亚伟. 液体分散染料研发技术现状及其应用前景[J]. 纺织学报, 2023, 44(05): 220-227.
[15] 易菁源, 裴刘军, 朱赫, 张红娟, 王际平. 非水介质染色体系中分散染料对涤纶/棉混纺织物的沾色研究[J]. 纺织学报, 2023, 44(05): 29-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!