纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 171-178.doi: 10.13475/j.fzxb.20230400401

• 染整工程 • 上一篇    下一篇

调温抗菌微胶囊的制备及其在棉织物上的应用

孙浪涛(), 杨宇珊   

  1. 泉州师范学院 纺织与服装学院, 福建 泉州 362000
  • 收稿日期:2023-06-02 修回日期:2023-12-01 出版日期:2024-02-15 发布日期:2024-03-29
  • 作者简介:孙浪涛(1986—),男,讲师,硕士。主要研究方向为功能性纺织品。E-mail:sunlt1986@163.com
  • 基金资助:
    福建省教育厅中青年教师教育科研项目(JAT210313)

Preparation of thermoregulation and antibacterial microcapsules and its application in cotton fabrics

SUN Langtao(), YANG Yushan   

  1. College of Textiles and Apparel, Quanzhou Normal University, Quanzhou, Fujian 362000, China
  • Received:2023-06-02 Revised:2023-12-01 Published:2024-02-15 Online:2024-03-29

摘要:

为开发兼具储热调温及抗菌功能的纺织品,提高纺织品的功能性及附加值,以正十八烷和艾蒿油为芯材,以三聚氰胺-尿素-甲醛树脂为壁材,采用原位聚合法制备具有调温及抗菌复合功能的微胶囊材料,最后通过浸轧法将其整理到纯棉织物上。利用扫描电子显微镜、激光粒度分析仪、傅里叶红外光谱仪、热重分析仪、差示扫描量热仪等对微胶囊进行测试表征,并分析整理后织物的调温及抗菌性能。结果表明:制备的微胶囊呈圆球状,成形良好,平均粒径为1 647 nm,且分布集中,包覆性好;升降温相变温度分别为32、20 ℃,熔融及凝固热焓值分别为101.37、107.93 J/g,在300 ℃以内具有较好的热稳定性;制备的调温抗菌织物甲醛含量符合国家标准要求,其保温率提升23.2%,调温能力为1.6 ℃,对大肠杆菌的抑菌率在85%以上,对金黄色葡萄球菌的抑菌率在97%以上。

关键词: 相变储能, 抗菌, 原位聚合, 微胶囊, 功能整理, 功能性纺织品

Abstract:

Objective When the ambient temperature changes suddenly, cotton products are weak to regulate the temperature, which affects the wearing comfort of the garment. Meanwhile, the moisture absorption of cotton fibres is strong, which makes the fabrics prone to breeding various microorganisms such as bacteria, fungi, algae and viruses. This is detrimental to human health. In order to improve thermoregulation and antibacterial ability of cotton fabrics, microencapsulated materials with thermoregulatory and antimicrobial properties were synthesised using microencapsulation technology. These materials were then used to treat cotton fabrics for enhancing their respective thermoregulatory and antimicrobial capabilities.

Method In this study, the microcapsule was prepared with the core materials including both n-octadecane, mugwort oil and the wall materials consisting of melamine urea-formaldehyde (MUF) resin by in situ polymerization method. The microcapsules with thermoregulation and antibacterial functions were then finished on pure cotton fabrics by dipping and rolling method. The microcapsules were characterized by scanning electron microscopy, laser particle size analyzer, Fourier infrared spectrometer, thermogravimetric analyzer and differential scanning calorimeter. The formaldehyde content, thermal insulation, thermal imaging, and antibacterial performance of the microcapsule finishing sample underwent testing as well as the temperature regulation and antibacterial properties of the fabric were evaluated.

Results Microcapsule materials with temperature regulation and antibacterial properties were prepared for this study. The results showed that, the microcapsules had a spherical appearance with a smooth surface and wear well-formed. The particle size was predominantly in the range of 1 100-2 500 nm, accounting for 95%, with an average particle size of 1 647 nm, demonstrating good uniformity. Infrared spectroscopy indicated that, the infrared spectral characteristic peaks of the microcapsules comprise the peaks of n-octadecane, mugwort oil, and MUF resin. This finding suggests that the wall material possesses excellent coating properties on the core materials. The latent heat test results and temperature of phase transformation indicate that, there are obvious heat absorption and exothermic peaks on the heating curve and cooling curve of microcapsules, and the phase transition temperatures of rising and cooling are 32 ℃ and 20 ℃. The enthalpy values for melting and solidification phase transition are 101.37 J/g and 107.93 J/g, indicating that microcapsules have strong heat storage capacity. The coating rate of prepared microcapsules is 74.3%. Thermal stability testing indicated that, the microcapsule exhibits great thermal stability at a temperature of 300 ℃, but experiences a high rate of weight loss once the temperature reaches 302.7 ℃. The pure cotton fabric with functions of thermoregulation and antibacterial was prepared. The results showed that, the formaldehyde content of the sample conforms to the national standard. The thermal resistance of the sample increased by 17.8%, and the insulation rate increased by 15.1% before washing, and after washing for 30 times, they are 26.5% and 23.2%. The sample thermoregulation capacity is 1.6 ℃ before washing, and after washing for 30 times, it is 1.4 ℃. The bacteriostatic rate of the samples against E. coli is more than 85% before washing, and after washing for 30 times, it is more than 40%. The bacteriostatic rate of the samples against Staphylococcus aureus is more than 97% before washing, and after washing for 30 times, it is more than 92%.

Conclusion The aforementioned test results show that, the formulated microcapsule material possesses a smooth surface, concentrated particle size dispersion, favorable coating ability, high latent heat of phase transformation, and good heat resistance, which can meet the requirements of the general conditions of textile processing. Additionally, cotton fabrics treated with this microcapsule material exhibit thermoregulatory and antibacterial properties. In the future, the research on microcapsules with phase change temperature regulation and antibacterial composite function for textile, it can be carried out from the shape and structure of microcapsules, size, thermal stability, and the combination technology of microcapsules and textile materials. This will enable the optimization of preparation technology for textiles with improved thermoregulation and antibacterial functions, thus enhancing the functionality and added value of textiles.

Key words: phase change energy storage, antibacterial, in situ polymerization, microcapsule, functional finishing, functional textile

中图分类号: 

  • TS195.6

图1

微胶囊制备示意图"

图2

微胶囊的SEM照片(×5 000)"

图3

微胶囊粒径分布图"

图4

壁材与芯材及微胶囊的红外光谱图"

图5

微胶囊及芯材的DSC曲线"

图6

微胶囊的TGA曲线"

表1

织物保温性能测试结果"

试样 质量增加
率/%
热阻/
(m2·K·W-1)
保温率/
%
洗前 1# 2.15 0.007 3 15.550
2# 27.28 0.007 9 16.571
3# 42.34 0.008 6 17.900
洗后 1# 0.31 0.003 4 7.984
2# 21.61 0.004 1 9.281
3# 29.25 0.004 3 9.833

图7

织物热成像图"

图8

织物抗菌性能测试结果"

[1] 李伟, 朱振国, 耿晓叶. 二氧化硅-聚氨酯复合囊壁的相变储能微胶囊的制备与表征[J]. 天津工业大学学报, 2018, 37(3):7-11,18.
LI Wei, ZHU Zhenguo, GENG Xiaoye. Preparation and characterization of phase change energy storage microcapsules with shell of SiO2-polyurethane[J]. Journal of Tiangong University, 2018, 37(3):7-11,18.
[2] 孙洁, 孙娜, 周建安, 等. 相变微胶囊及其功能纺织品研究进展[J]. 服装学报, 2019, 4(3):189-200.
SUN Jie, SUN Na, ZHOU Jian'an, et al. Research and development of phase change material microcapsules and functional textiles[J]. Journal of Clothing Research, 2019, 4(3):189-200.
[3] 赵亮, 方向晨, 黄新露, 等. 相变储能材料的制备及其在石膏基体中的应用研究[J]. 新型建筑材料, 2020, 47(3):135-138.
ZHAO Liang, FANG Xiangchen, HUANG Xinlu, et al. Preparation of phase change storage materials and application in gypsum matrix[J]. New Building Materials, 2020, 47(3):135-138.
[4] 陈向标, 江创生, 江华丽, 等. 纺织用相变微胶囊材料的研究进展[J]. 当代化工, 2021, 50(1):162-165.
CHEN Xiangbiao, JIANG Chuangsheng, JIANG Huali, et al. Research process of phase change microcapsule materials for textile[J]. Contemporary Chemical Industry, 2021, 50(1):162-165.
[5] 袁丽霞, 王红梅, 倪骁慧, 等. 正十八烷相变微胶囊的制备与表征[J]. 嘉兴学院学报, 2015, 27(6):98-101.
YUAN Lixia, WANG Hongmei, NI Xiaohui, et al. Preparation and characterization of phase chang microcapsules containing n-octadecane[J]. Journal of Jiaxing University, 2015, 27(6):98-101.
[6] 王委委, 黄聪, 蔡以兵, 等. 相变微胶囊的制备及其在调温织物中的应用[J]. 现代化工, 2019, 39(9):92-96,101.
WANG Weiwei, HUANG Cong, CAI Yibing, et al. Fabrication of phase change microcapsule and its application in thermo-regulated fabrics[J]. Modern Chemical Industry, 2019, 39(9):92-96,101.
[7] QIU Xiaolin, LU Lixin, ZHANG Zhixiong, et al. Preparation, thermal property,and thermal stability of microencapsulated n-octadecane with poly(stearyl methacrylate) as shll[J]. Therm Anal Calorim, 2014, 118:1441-1449.
[8] 彭勇刚, 周永生, 纪俊玲, 等. 壳聚糖-海藻酸钠艾蒿油微胶囊的制备及其抗菌性能研究[J]. 现代丝绸科学与技术, 2015, 30(6):213-215.
PENG Yonggang, ZHOU Yongsheng, JI Junling, et al. Preparation and antibacterial properties of chitosan-sodium alginate Mugwort oil microcapsules[J]. Modern Silk Science & Technology, 2015, 30(6):213-215.
[9] 王亚, 黄菁菁, 张如全. 艾蒿油-壳聚糖抗菌微胶囊的制备及其应用[J]. 纺织学报, 2018, 39(10):99-103.
WANG Ya, HUANG Jingjing, ZHANG Ruquan. Preparation and application of antimicrobial mug wort oil-chitosan microcapsules[J]. Journal of Textile Research, 2018, 39(10):99-103.
doi: 10.1177/004051756903900117
[10] 李芳, 王全杰, 肖振峰. 艾蒿油微胶囊的制备及其抗菌性研究[J]. 皮革科学与工程, 2012, 22(2):39-46.
LI Fang, WANG Quanjie, XIAO Zhenfeng. Preparation and antimicrobial activities of artemisia argyllem oil microcapusule[J]. Leather Science and Engineering, 2012, 22(2):39-46.
[11] 张艳丽. 相变微胶囊低温防护复合织物的结构设计及传热模型研究[D]. 天津: 天津工业大学, 2019:26-27.
ZHANG Yanli. Structural design and heat transfer model of low-temperature protective composite fabric with phase change microcapsules[D]. Tianjin: Tiangong University, 2019:26-27.
[12] 李东昇, 刘雷艮, 吴建兵, 等. 十八烷基聚甲基丙烯酸甲酯相变微胶囊的制备及其表征[J]. 毛纺科技, 2022, 50(10): 64-71.
LI Dongsheng, LIU Leigen, WU Jianbing, et al. Preparation and characterization of octadecyl PMMA phase change microcapsules[J]. Wool Textile Journal, 2022, 50(10):64-71.
[13] 杨建, 张国庆, 刘国金, 等. 复合相变微胶囊制备及其在棉织物上的应用[J]. 纺织学报, 2019, 40(10):127-133.
YANG Jian, ZHANG Guoqing, LIU Guojin, et al. Preparation of composite phase change microcapsules and its application on cotton fabrics[J]. Journal of Textile Research, 2019, 40(10):127-133.
[14] 郝林聪, 任笑鸽, 王玲, 等. 芳香微胶囊的制备及其在棉织物上的应用[J]. 毛纺科技, 2022, 50(10):36-42.
HAO Lincong, REN Xiaoge, WANG Ling, et al. Preparation and application of aromatic microcapsules on cotton fabric[J]. Wool Textile Journal, 2022, 50(10):36-42.
[1] 史玉磊, 曲连艺, 刘江龙, 徐英俊. 氧化锌/儿茶酚甲醛树脂微球抗菌粘胶纤维的制备及其性能[J]. 纺织学报, 2024, 45(02): 21-27.
[2] 周歆如, 范梦晶, 岳欣琰, 洪剑寒, 韩潇. 导电微纳纤维复合纱的制备及其气敏特性[J]. 纺织学报, 2024, 45(02): 52-58.
[3] 杨智超, 刘淑强, 吴改红, 贾潞, 张曼, 李甫, 李慧敏. 可吸收手术缝合线研究进展[J]. 纺织学报, 2024, 45(01): 230-239.
[4] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[5] 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122.
[6] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[7] 李修田, 宋伟广, 张丽平, 杜长森, 付少海. 聚酰胺原液着色母粒的制备及其性能[J]. 纺织学报, 2023, 44(11): 45-51.
[8] 李睿, 王梦柯, 于春晓, 郑晓頔, 邱志成, 李志勇, 武术方. 原位聚合法聚酰胺6/炭黑复合纤维的制备及其性能[J]. 纺织学报, 2023, 44(10): 1-8.
[9] 帅旗, 孙硕, 成世杰, 张宏伟, 左丹英. 氮硼掺杂碳量子点/异氰酸酯型微胶囊复合整理棉织物及其防紫外线性能[J]. 纺织学报, 2023, 44(08): 126-132.
[10] 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17.
[11] 谭家玲, 刘佳音, 于伟东, 殷允杰, 王潮霞. 基于SiO2微胶囊的多色谱温敏变色棉织物制备及其性能[J]. 纺织学报, 2023, 44(07): 167-174.
[12] 陈卓, 戴钧明, 潘晓娣, 李沐芳, 刘轲, 赵青华. 抗菌聚丙烯熔喷材料的反应挤出法制备及其性能[J]. 纺织学报, 2023, 44(06): 57-65.
[13] 刘欣宇, 李剑浩, 王震, 沈军炎, 杨雷. 复合型无氟聚丙烯酸酯乳液的制备及其防水性能[J]. 纺织学报, 2023, 44(04): 124-131.
[14] 李阳, 封严. 石墨烯基新型抗菌材料的研究进展[J]. 纺织学报, 2023, 44(04): 230-237.
[15] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!