纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 179-188.doi: 10.13475/j.fzxb.20230800201

• 染整工程 • 上一篇    下一篇

壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能

肖昊1,2, 孙辉1,2(), 于斌1,2, 朱祥祥1,2, 杨潇东1,2   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江省现代纺织技术创新中心, 浙江 绍兴 312000
  • 收稿日期:2023-08-01 修回日期:2023-11-01 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 孙辉(1976—),女,副教授,博士。主要研究方向为纺织材料的功能化改性。E-mail:sunhui@zstu.edu.cn
  • 作者简介:肖昊(1998—),男,硕士生。主要研究方向为非织造材料水处理应用的功能改性。
  • 基金资助:
    浙江省自然科学基金项目(LTGS23E030005);浙江省“高层次特殊人才支持计划”科技创新领军人才项目(2021R52031)

Preparation of chitosan-SiO2 aerogel/cellulose/polypropylene composite spunlaced nonwovens and adsorption dye performance

XIAO Hao1,2, SUN Hui1,2(), YU Bin1,2, ZHU Xiangxiang1,2, YANG Xiaodong1,2   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, China
  • Received:2023-08-01 Revised:2023-11-01 Published:2024-02-15 Online:2024-03-29

摘要:

为制备用于有机染料废水处理的生物质材料,以纤维素纤维/聚丙烯(CF/PP)为基材,经氧化后与以壳聚糖(CS)和硅酸四乙酯(TEOS)为原料制备的CS-SiO2混合溶液进行反应,再通过冷冻干燥得到CS-SiO2气凝胶/氧化纤维素(OCF)/PP复合水刺非织造材料。对复合材料的形貌、结构和其对有机染料吸附性能进行测试与表征,结果表明:相较于CF/PP水刺非织造材料,CS-SiO2气凝胶/OCF/PP复合水刺非织造材料表面出现明显的微孔结构,在OCF/PP水刺非织造材料表面出现了归属于CS和SiO2的红外特征峰;当TEOS体积分数为25%时,制得的样品在30 ℃、pH值为7的条件下对亚甲基蓝(MB)的吸附效率可达99.63%,经5次重复使用后,其对MB的吸附效率仍保持在80.59%左右;相比于CF/PP水刺非织造材料,CS-SiO2气凝胶/OCF/PP复合水刺非织造材料的拉伸强度和断裂伸长率略有下降。

关键词: 纤维素纤维/聚丙烯水刺非织造材料, 壳聚糖, 二氧化硅, 气凝胶, 有机染料吸附

Abstract:

Objective The cellulose fiber (CF) spunlaced nonwovens have the advantages of wide availability, low cost, excellent mechanical properties, and large specific surface area. However, as adsorption materials, cellulose and its derivatives have limited potential for intramolecular chain interactions and hydrogen bonding with organic dyes. In order to expand the application of cellulose-based spunlaced materials in the treatment of organic dye wastewater, CF/polypropylene (PP) spunlaced nonwovens with the mass ratio of 9∶1 was used as substrate material and oxidated. Then chitosan(CS)- silicon dioxide(SiO2) aerogel was prepared by sol-gel method and loaded on the surface of the oxidated CF (OCF)/PP spunlaced nonwovens to prepare CS-SiO2 aerogel/OCF/PP composite spunlaced nonwovens.

Method After oxidation, the OCF/PP spunlaced nonwoven fabric was used as the substrate and reacted with a mixed solution of CS and tetraethyl orthosilicate (TEOS) with different volume fractions via the sol-gel method, and then CS-SiO2 aerogel/OCF/PP composite spunlaced nonwoven fabric was obtained by freeze drying. The optimal volume fraction of TEOS in the CS-SiO2 aerogel/OCF/PP composite spunlaced nonwoven material was determined based on the studies of the morphology, structure, and organic dye adsorption performance of the composite spunlaced nonwovens. Additionally, the mechanical properties of the CS-SiO2 aerogel/OCF/PP composite spunlaced nonwoven material were investigated.

Results When the volume fraction of TEOS increased to 25%, the pores on the surface of the CS-SiO2 aerogel/OCF/PP composite spunlaced nonwoven became smaller and more densely distributed compared to the CF/PP spunlaced nonwovens material, and many micropores generated on the pore walls, providing more adsorption sites for organic dyes. FT-IR characteristic peaks belonging to CS and SiO2 appeared on the surface of the OCF/PP spunlaced nonwovens. Compared to the OCF/PP spunlaced nonwovens, the diffraction peaks at 2θ of 14.39° and 17.22° in the XRD pattern of the CS-SiO2 aerogel/OCF/PP composite spunlaced nonwovens (5#) were significantly weakened, indicating a reduction in the crystallinity of the reconstituted polysaccharide structure. The CS-SiO2 aerogel/OCF/PP composite spunlaced nonwovens (5#) exhibited higher adsorption efficiency for cationic dyes than those of anionic dyes. The adsorption efficiency of CS-SiO2 aerogel/OCF/PP composite spunlaced nonwovens for MB increased when the volume fractions of TEOS increased. When the volume fraction of TEOS was 25%, the adsorption temperature was 30 ℃, and the pH of adsorption solution was 7, the CS-SiO2 aerogel/OCF/PP composite spunlaced nonwovens exhibited the highest adsorption MB efficiency, reaching 99.63%. Compared with the pseudo-first-order adsorption model, the pseudo-second-order adsorption model showed better agreement with the experimental results, indicating that the main adsorption MB mechanism of the CS-SiO2 aerogel/OCF/PP composite spunlaced nonwovens (5#) was chemical adsorption. The adsorption thermodynamic analysis indicated that the adsorption MB of the CS-SiO2 aerogel/OCF/PP composite spunlaced nonwovens (5#) was a spontaneous process. After five cycles, the adsorption MB efficiency of the CS-SiO2 aerogel/OCF/PP composite spunlaced nonwovens (5#) remained around 80.59%. Compared to the CF/PP spunlaced nonwovens, the tensile strength and elongation at break of the CS-SiO2 aerogel/OCF/PP composite spunlaced nonwovens (5#) showed a slight decrease.

Conclusion The CS-SiO2 aerogel/OCF/PP composite spunlaced nonwovens exhibited the highest adsorption performance (99.63%) when the volume fraction of TEOS was 25%, the adsorption temperature was 30 ℃, and pH was 7. The composite nonwovens demonstrated good stability and reusability. The findings of this study would be useful for expanding the application of the CF/PP spunlaced nonwovens in the water treatment industry.

Key words: cellulose fiber/polypropylene spunlaced nonwoven material, chitosan, silica dioxide, aerogel, organic dye adsorption

中图分类号: 

  • TS176

图1

CS-SiO2气凝胶/OCF/PP复合水刺非织造材料的制备方法示意图"

表1

不同TEOS体积分数的CS-SiO2气凝胶/OCF/PP复合水刺非织造材料"

编号 TEOS体积分数/% CS体积分数/% 水刺非织造材料
1# 0 0 CF/PP
2# 0 0 OCF/PP
3# 15 85 OCF/PP
4# 20 80 OCF/PP
5# 25 75 OCF/PP
6# 30 70 OCF/PP

图2

处理前后水刺非织造材料的SEM照片"

表2

处理前后水刺非织造材料的元素成分"

样品编号 C原子百分比 O原子百分比 Si原子百分比
1# 60.53 39.47
2# 54.32 45.68
3# 55.17 36.99 7.84
4# 51.96 39.99 8.05
5# 47.60 43.09 9.31
6# 46.29 42.55 11.16

图3

CF/PP、OCF/PP水刺非织造材料及CS-SiO2气凝胶/OCF/PP复合水刺非织造材料(5#)的红外光谱图"

图4

CF/PP、OCF/PP水刺非织造材料及CS-SiO2气凝胶/OCF/PP复合水刺非织造材料(5#)的XRD谱图"

图5

CS-SiO2气凝胶/OCF/PP复合水刺非织造材料(5#)对4种有机染料的吸附效率"

图6

不同TEOS体积分数的CS-SiO2气凝胶/OCF/PP复合水刺非织造材料对MB的吸附效率"

图7

不同吸附温度下CS-SiO2气凝胶/OCF/PP复合水刺非织造材料对MB的吸附效率"

图8

不同pH值下CS-SiO2气凝胶/OCF/PP复合水刺非织造材料对MB的吸附效率"

图9

CS-SiO2气凝胶/OCF/PP复合水刺非织造材料对MB吸附的动力学拟合曲线"

图10

CS-SiO2气凝胶/OCF/PP复合水刺非织造材料吸附MB的热力学拟合曲线"

表3

CS-SiO2气凝胶/OCF/PP复合水刺非织造材料在不同温度下对MB的吸附热力学参数"

ΔHθ/
(kJ·mol-1)
ΔSθ
(J·mol-1·K-1)
ΔGθ/(kJ·mol-1)
293 K 298 K 303 K
197.343 695.632 -6.477 -9.955 -13.433

图11

CS-SiO2气凝胶/OCF/PP复合水刺非织造材料的重复使用性"

图12

CF/PP、OCF/PP和CS-SiO2气凝胶/OCF/PP复合水刺非织造材料(5#)的应力-应变曲线"

[1] GHORAI S, SARKAR A, RAOUFI M, et al. Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica[J]. ACS Applied Materials & Interfaces, 2014, 6(7): 4766-4777.
[2] LIU G, XU S, LI W, et al. Preparation of three-dimensional porous spherical TiO2@g-C3N4 composites and visible light catalytic degradation on organic dyes[J]. Journal of Solid State Chemistry, 2023, 326: 124223.
doi: 10.1016/j.jssc.2023.124223
[3] MONIER M, AYAD D M, WEI Y, et al. Adsorption of Cu (II), Co (II), and Ni (II) ions by modified magnetic chitosan chelating resin[J]. Journal of Hazardous Materials, 2010, 177(1-3): 962-970.
doi: 10.1016/j.jhazmat.2010.01.012
[4] 王双双, 季志浩, 盛国栋, 等. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(9):156-166.
WANG Shuangshuang, JI Zhihao, SHENG Guodong, et al. Damage of organic dyes to human body adsorption properties of zero-valent iron/graphene oxide composite adsorbent for dyes and heavy metals[J]. Journal of Textile Research, 2022, 43(9): 156-166.
[5] 杨凯, 张啸梅, 焦明立, 等. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(8):1-8.
YANG Kai, ZHANG Xiaomei, JIAO Mingli, et al. Preparation and adsorption performance of high ortho phenolic based nano activated carbon fibers[J]. Journal of Textile Research, 2020, 41(8):1-8.
doi: 10.1177/004051757104100101
[6] DONKADOKULA N Y, KOLA A K, NAZ I, et al. A review on advanced physico-chemical and biological textile dye wastewater treatment techniques[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19: 543-560.
doi: 10.1007/s11157-020-09543-z
[7] 徐春霞, 降帅, 韩阜益, 等. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10):20-25.
XU Chunxia, JIANG Shuai, HAN Fuyi, et al. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue[J]. Journal of Textile Research, 2019, 40(10):20-25.
[8] BISWAL A K, PANDA L, CHAKRABORTY S, et al. Production of a nascent cellulosic material from vegetable waste: synthesis, characterization, functional properties, and its potency for a cationic dye re-moval[J]. International Journal of Biological Macromolecules, 2023, 242(4): 124959.
doi: 10.1016/j.ijbiomac.2023.124959
[9] RUAN C, MA Y, SHI G, et al. Self-assembly cellulose nanocrystals/SiO2 composite aerogel under freeze-drying: adsorption towards dye contaminant[J]. Applied Surface Science, 2022, 592: 153280.
doi: 10.1016/j.apsusc.2022.153280
[10] PANDEY S, MISHRA S B. Sol-gel derived organic-inorganic hybrid materials: synthesis, characterizations and applications[J]. Journal of Sol-Gel Science and Technology, 2011, 59: 73-94.
doi: 10.1007/s10971-011-2465-0
[11] NGAH W S W, TEONG L C, HANAFIAH M A K M. Adsorption of dyes and heavy metal ions by chitosan composites: a review[J]. Carbohydrate Polymers, 2011, 83(4): 1446-1456.
doi: 10.1016/j.carbpol.2010.11.004
[12] SADIQ A C, OLASUPO A, NGAH W S W, et al. A decade development in the application of chitosan-based materials for dye adsorption: a short review[J]. International Journal of Biological Macromolecules, 2021, 191: 1151-1163.
doi: 10.1016/j.ijbiomac.2021.09.179 pmid: 34600954
[13] ZHOU B, SHEN J, WU Y, et al. Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane[J]. Materials Science and Engineering: C, 2007, 27(5-8): 1291-1294.
doi: 10.1016/j.msec.2006.06.032
[14] SALAMA A, ABOU-ZEID R E. Ionic chitosan/silica nanocomposite as efficient adsorbent for organic dyes[J]. International Journal of Biological Macromolecules, 2021, 188: 404-410.
doi: 10.1016/j.ijbiomac.2021.08.021 pmid: 34371039
[15] GHORAI S, SARKAR A, RAOUFI M, et al. Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica[J]. ACS Applied Materials & Interfaces, 2014, 6(7): 4766-4777.
[16] LI Z, SHAO L, HU W, et al. Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent[J]. Carbohydrate Polymers, 2018, 191: 183-190.
doi: S0144-8617(18)30283-2 pmid: 29661308
[17] HASSAN H, SALAMA A, EL-ZIATY A K, et al. New chitosan/silica/zinc oxide nanocomposite as adsorbent for dye removal[J]. International Journal of Biological Macromolecules, 2019, 131: 520-526.
doi: S0141-8130(18)35840-9 pmid: 30880055
[18] JIAO C, TAO J, XIONG J, et al. In situ synthesis of MnO2-loaded biocomposite based on microcrystalline cellulose for Pb2+ removal from wastewater[J]. Cellulose, 2017, 24: 2591-2604.
doi: 10.1007/s10570-017-1271-4
[19] SALAMA A, EL-SAKHAWY M. Regenerated cellulose/wool blend enhanced biomimetic hydroxyapatite mineralization[J]. International Journal of Biological Macromolecules, 2016, 92: 920-925.
doi: S0141-8130(16)30964-3 pmid: 27471090
[20] WITOON T, CHAREONPANICH M, LIMTRAKUL J. Size control of nanostructured silica using chitosan template and fractal geometry: effect of chitosan/silica ratio and aging temperature[J]. Journal of Sol-Gel Science and Technology, 2010, 56: 270-277.
doi: 10.1007/s10971-010-2303-9
[21] FAN S, WANG Y, WANG Z, et al. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 601-611.
doi: 10.1016/j.jece.2016.12.019
[22] TANG X, ZHANG Q, LIU Z, et al. Removal of Cu(II) by loofah fibers as a natural and low-cost adsorbent from aqueous solutions[J]. Journal of Molecular Liquids, 2014, 199: 401-407.
doi: 10.1016/j.molliq.2014.09.033
[23] FENG J, SUN H, YU B, et al. Preparation of NH2-MIL-101 (Fe)@viscose spunlaced nonwoven porous carbon material for organic dye adsorption[J]. Fibers and Polymers, 2023. DOI: 10.1007/S12221-023-00163-2.
[1] 李平, 朱平, 刘云. 壳聚糖基膨胀阻燃涤纶/棉混纺织物的制备及其性能[J]. 纺织学报, 2024, 45(02): 162-170.
[2] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[3] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[4] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[5] 邵彦峥, 孙将皓, 魏春艳, 吕丽华. 棉秆皮微晶纤维素/改性壳聚糖吸附纤维制备与性能[J]. 纺织学报, 2023, 44(08): 18-25.
[6] 吕红丽, 罗丽娟, 师建军, 郑振荣, 李红晨. 柔性增强二氧化硅气凝胶的研究进展[J]. 纺织学报, 2023, 44(08): 217-224.
[7] 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25.
[8] 吕婧, 刘增伟, 程青青, 张学同. 芳纶纳米纤维气凝胶的研究进展[J]. 纺织学报, 2023, 44(06): 10-20.
[9] 狄友波, 陈燮阳, 阎智锋, 殷轩, 邱纯利, 马伟良, 张向兵. 壳聚糖-聚乙烯醇协同对籽用大麻浆粕铁离子的脱除[J]. 纺织学报, 2023, 44(06): 175-182.
[10] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[11] 孙将皓, 邵彦峥, 魏春艳, 王迎. 海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能[J]. 纺织学报, 2023, 44(04): 24-31.
[12] 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209.
[13] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
[14] 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
[15] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!