纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 206-213.doi: 10.13475/j.fzxb.20231004501
CHENG Ziqi1, LU Yehu1,2(), XU Jingxian1
摘要:
为保证电加热服装的舒适性与安全性,并为其优化设计提供参考,通过Comsol软件建立了包含皮肤层的电热织物系统传热模型,考虑了热传导、热对流、热辐射3种传热方式,进行了多物理场耦合模拟。将模拟的瞬态结果与实验数据进行对比发现,二者随时间变化的温度曲线相近,且实时温度和最终温度相对误差均低于4%,说明模拟值与实验值之间具有良好的吻合性。通过该数值模型进行了稳态的参数化研究,拟合了皮肤温度与环境温度、风速、发热片加热温度、服装内外层热阻之间的线性关系,建立了皮肤温度预测模型,并应用模型设计电加热服装的相关参数。本文研究结果可为特定使用环境下电加热片的设计与选择提供理论参考。
中图分类号:
[1] |
REAZUDDIN M, DAIVA M. Progress in flexible electronic textile for heating application: a critical review[J]. Materials, 2021, 14(21): 17-18.
doi: 10.3390/ma14010017 |
[2] | WANG F, GAO C. Protective clothing: managing thermal stress[M]. Cambridge: Woodhead Publishing, 2014: 282-283. |
[3] | 庄梅玲, 张晓枫. 电热服的热性能评价[J]. 青岛大学学报(工程技术版), 2004, 19(2): 54-58. |
ZHUANG Meiling, ZHANG Xiaofeng. Heat performance evaluation of electric heating garment[J]. Journal of Qingdao University (Engineering & Technology Edition), 2004, 19(2): 54-58. | |
[4] |
SORA S, HAE-HYUN C, BIN Y, et al. Evaluation of body heating protocols with graphene heated clothing in a cold environment[J]. International Journal of Clothing Science and Technology, 2017, 29(6): 830-844.
doi: 10.1108/IJCST-03-2017-0026 |
[5] | 丁波, 李健, 牛子璇, 等. 电加热服装发热元件的组合设计与评价[J]. 纺织导报, 2022(5): 93-97. |
DING Bo, LI Jian, NIU Zixuan, et al. Combination design and evaluation of heating elements for electrically heated gar-ments[J]. China Textile Leader, 2022(5): 93-97. | |
[6] |
SONG W, LAI D, WANG F. Evaluating the cold protective performance (CPP) of an electrically heated garment (EHG) and a chemically heated garment (CHG) in cold environments[J]. Fibers and Polymers, 2015, 16(12): 2689-2697.
doi: 10.1007/s12221-015-5409-4 |
[7] | WANG F, GAO C, HOLMER I. Effects of air velocity and clothing combination on heating efficiency of an electrically heated vest (EHV): a pilot study[J]. Occup Environ Hyg, 2010, 7(9): 501-505. |
[8] | PARK H, HWANG S, LEE J, et al. Impact of electrical heating on effective thermal insulation of a multi-layered winter clothing system for optimal heating efficiency[J]. International Journal of Clothing Science and Technology, 2016, 28(2): 254-264. |
[9] | 吴黛唯, 李红彦, 戴艳阳, 等. 加热装置在防寒服中的位置及其热效用[J]. 纺织学报, 2020, 41(6): 118-124. |
WU Daiwei, LI Hongyan, DAI Yanyang, et al. Thermal function effectiveness and location of heating device in cold protective clothing[J]. Journal of Textile Research, 2020, 41(6): 118-124.
doi: 10.1177/004051757104100206 |
|
[10] | 徐新宇, 王云仪. CFD数值模拟在着装人体传热研究中的应用进展[J]. 纺织导报, 2021(9): 74-78. |
XÜ Xinyu, WANG Yunyi. Application of CFD numerical simulation in heat transfer research of dressed human body[J]. China Textile Leader, 2021(9): 74-78. | |
[11] | 李雅芳. 基于镀银纱线的加热织物制备及其热力学性能研究与仿真[D]. 天津: 天津工业大学, 2017:117-118. |
LI Yafang. Preparation and study of thermal property in heating fabric based on silver-plated yarn[D]. Tianjin: Tiangong University, 2017:117-118. | |
[12] | 陈扬, 杨允出, 张艺强, 等. 电加热服装中加热片与织物组合体的稳态热传递模拟[J]. 纺织学报, 2018, 39(5): 49-55. |
CHEN Yang, YANG Yunchu, ZHANG Yiqiang, et al. Simulation of steady heat transfer on fabrics system embedded with heating unit in electrically heated clothing[J]. Journal of Textile Research, 2018, 39(5): 49-55.
doi: 10.1177/004051756903900109 |
|
[13] | 谢艳杰. 电加热服热性能仿真分析研究[D]. 北京: 北京服装学院, 2021:49-50. |
XIE Yanjie. Research on simulation analysis of thermal performance of electric heating clothing[D]. Beijing: Beijing Institute of Fashion Technology, 2021:49-50. | |
[14] | LI X, KUAI B, TU X, et al. Three-dimensional analysis model of electric heating fabrics considering the skin metabolism[J]. Journal of Engineered Fibers and Fabrics, 2021, 16: 3-4. |
[15] | 刘鸣茗. 基于皮肤组织模型的热功能服装传热性能模拟分析[D]. 杭州: 浙江理工大学, 2021:43-44. |
LIU Mingming. Study and prediction of heat transfer performance of thermal textile considering the skin tissue[D]. Hangzhou: Zhejiang Sci-Tech University, 2021:43-44. | |
[16] | WANG F, KANG Z, ZHOU J. Model validation and parametric study on a personal heating clothing system (PHCS) to help occupants attain thermal comfort in unheated buildings[J]. Building and Environment, 2019, 162: 2-9. |
[17] | HUANG Q, XING G, YANG F, et al. Modelling and experimental study on electrically heating garment to enhance personal thermal comfort[C]//ADIGUZEL O, BRAZHNIKOV A, GU K, et al. 2020 International Conference on New Energy, Power and Environmental Engineering. Xiamen: IOP Publishing Ltd, 2021, 696(1): 4-11. |
[18] | 张渭源. 服装舒适性与功能[M]. 北京: 中国纺织出版社, 2005:35-36. |
ZHANG Weiyuan. Clothing comfort and function[M]. Beijing: China Textile & Apparel Press, 2005: 35-36. | |
[19] | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019: 5-11. |
TAO Wenquan. Heat transfer[M]. 5th ed. Beijing: Higher Education Press, 2009: 5-11. | |
[20] | 崔鹏. 高蓬松纤维集合体保温性检测机理与应用[D]. 上海: 东华大学, 2011: 46-48. |
CUI Peng. The principle and application of test of warm performance of high buoyancy fibrous porous mate-rials[D]. Shanghai: Donghua University, 2011:46-48. | |
[21] | 戈强胜, 谭伟新, 王向钦, 等. 远红外纺织品评价指标研究[J]. 中国纤检, 2018(6): 132-134. |
GE Qiangsheng, TAN Weixin, WANG Xiangqin, et al. The index research for the evaluation of the far infrared radiated textiles[J]. China Fiber Inspection, 2018(6): 132-134. | |
[22] | 顾心清, 李荣杰, 李亿光, 等. 92海军舰艇艇员防寒服保暖性能人体试验评价[J]. 海军医学杂志, 2000(1): 17-20. |
GU Qiangsheng, LI Rongjie, LI Yiguang, et al. Evaluation of thermal insulation of mark 92 cold weather clothing for navy ship's crew[J]. Journal of Navy Medicine, 2000(1): 17-20. | |
[23] | 周浩. 人体皮肤温度影响因素实验研究[D]. 西安: 西安建筑科技大学, 2013:10-11. |
ZHOU Hao. Experimental study on the influence factors of human skin temperature[D]. Xi'an: Xi'an University of Architecture and Technology, 2013:10-11. |
[1] | 董智佳, 郭燕雨秋, 刘海桑, 姚思宏. 经编全成形镂空紧身衣的结构设计与实现[J]. 纺织学报, 2023, 44(12): 130-137. |
[2] | 王中昱, 苏云, 王云仪. 机器学习建立的个体热舒适模型及其在服装领域的应用展望[J]. 纺织学报, 2023, 44(05): 228-236. |
[3] | 杜吉辉, 苏云, 刘广菊, 田苗, 李俊. 智能防寒手套温控系统设计及热舒适性研究[J]. 纺织学报, 2023, 44(04): 172-178. |
[4] | 吴佳庆, 王怡婷, 何欣欣, 郭亚飞, 郝新敏, 王迎, 宫玉梅. 混纺比对生物基锦纶56短纤/棉混纺纱力学性能的影响[J]. 纺织学报, 2023, 44(03): 49-54. |
[5] | 于学智, 张明光, 曹继鹏, 张月, 王晓燕. 捻度对锦纶/棉混纺纱质量指标的影响[J]. 纺织学报, 2023, 44(01): 106-111. |
[6] | 陈莹, 宋泽涛, 郑晓慧, 姜延, 常素芹. 蒸发型降温服的降温性能研究[J]. 纺织学报, 2022, 43(11): 141-147. |
[7] | 郑雯洁, 张爱丹. 基于图像光影重构的缎纹影光织物明度预测方法[J]. 纺织学报, 2022, 43(05): 97-103. |
[8] | 张昭华, 陈之瑞, 李璐瑶, 肖平, 彭浩然, 张钰涵. 人体局部皮肤的气流敏感性及其影响因素[J]. 纺织学报, 2021, 42(12): 125-130. |
[9] | 王利君, 马希明, 丁殷佳, 陈诚毅. 风速对单双层着装状态下运动服针织面料湿阻的影响[J]. 纺织学报, 2021, 42(07): 151-157. |
[10] | 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150. |
[11] | 杨阳, 俞欣, 章为敬, 张佩华. 针织面料凉爽性能的评价方法及其预测模型[J]. 纺织学报, 2021, 42(03): 95-101. |
[12] | 张晓侠, 刘凤坤, 买巍, 马崇启. 基于BP神经网络及其改进算法的织机效率预测[J]. 纺织学报, 2020, 41(08): 121-127. |
[13] | 黄倩倩, 李俊. 环境温度突变时人体热感觉变化机制研究进展[J]. 纺织学报, 2020, 41(04): 188-194. |
[14] | 郑晴, 王宏付, 柯莹, 李爽. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(03): 124-129. |
[15] | 周捷, 马秋瑞. BP神经网络在塑身内衣压力预测中的应用[J]. 纺织学报, 2019, 40(04): 111-116. |
|