纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 67-76.doi: 10.13475/j.fzxb.20231005001

• 纺织工程 • 上一篇    下一篇

基于定制纤维铺放工艺的电加热织物制备及其半球成型性能

居傲1,2, 向卫宏1,2, 崔艳超3, 孙颖1,2(), 陈利1,2   

  1. 1.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
    2.天津工业大学 纺织科学与工程学院, 天津 300387
    3.天津航空机电有限公司, 天津 300308
  • 收稿日期:2023-10-16 修回日期:2023-12-07 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 孙颖(1974—),女,教授。主要研究方向为高性能纤维编织材料及其复合材料。E-mail:sunying@tiangong.edu.cn
  • 作者简介:居傲(1995—),男,博士生。主要研究方向为电加热织物及其复合材料设计与开发。
  • 基金资助:
    天津市自然科学基金项目(19JCYBJC18300)

Preparation and hemisphere forming properties of electric heating fabrics based on tailored fiber placement technology

JU Ao1,2, XIANG Weihong1,2, CUI Yanchao3, SUN Ying1,2(), CHEN Li1,2   

  1. 1. Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
    2. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    3. Tianjin Aviation Electromechanical Co., Ltd., Tianjin 300308, China
  • Received:2023-10-16 Revised:2023-12-07 Published:2024-02-15 Online:2024-03-29

摘要:

为开发既具有电热性能又满足对三维表面具有一定适应性的电加热织物,采用定制纤维铺放(TFP)工艺设计制备直线形、正弦波形、锯齿形和尖角形4种镍铬合金丝排布方式的电加热织物,研究电加热织物的电热性能和半球成型性能。结果表明:10 V直流电压下通电30 s,4种电加热织物表面最高平衡温度分别达到159.5、92.8、66.7和31.5 ℃,温度分布均匀;反作用力与镍铬合金丝排布方式密切相关;半球成型最终状态下,直线形电加热织物成型反作用力最小,表面褶皱和细观缺陷最少,且最大面内剪切角为32.26°;与未引入镍铬合金丝玻璃纤维基底织物相近,即直线形电加热织物半球成型性优于正弦波形、锯齿形和尖角形电加热织物。

关键词: 电加热织物, 定制纤维铺放工艺, 电热性能, 半球成型, 面内剪切

Abstract:

Objective Electric heating fabrics have a wide range of uses, where deformation is inevitable. Therefore, electric heating fabrics should have the ability to conform to three-dimensional surfaces. The research objective is to design the arrangement of electric heating elements based on temperature matching, construct a multi-element combination electric heating fabric structure, and provide a design basis for compromising optimization of electric heating fabrics for use in special-shaped composite components.

Method Using the tailored fiber placement (TFP) technology, aramid bundled nickel chromium alloy wire are fixed onto fiberglass fabric(G1) along a predetermined path to prepare electric heating fabric. The surface density of nickel chromium wire is kept constant, and four kinds of arrangement and distribution are designed, namely linear (E1), sine wave (E2), gear (E3), and cuspate (E4). The electrothermal properties of electric heating fabric under external voltage and its adaptability to hemispherical punch were systematically studied.

Results Under a 10 V direct-current voltage, the electric heating fabric rapidly heated up and reached the highest equilibrium temperature on the surface after 30 s. At this point, the power was cut off and the surface of the electrically heated fabric were left for natural cooling. After 30 s of electrification, the maximum equilibrium temperature on the surface of E1 was 159.5 ℃, while E2, E3, and E4 were 92.8 ℃, 66.7 ℃, and 31.5 ℃, respectively. When the formation reached the same displacement, the load on E1, E2, E3, and E4 subjected to the hemispherical punch was significantly greater than that on G1, and the mechanical response was found to be related to the distribution of nickel chromium alloy wire. The maximum formation reaction force of E4 was 72.17 N, which is 75.08%, 56.18%, 47.23%, and 12.54% higher than that of G1, E1, E2, and E3, respectively. The maximum in-plane shear angles on the surface of G1, E1, E2, E3, and E4 specimens were 34.18°, 32.26°, 30.8°, 28.04°, and 21.08°, respectively. The maximum in-plane shear angle of four types of electric heating fabrics was negatively correlated with the reaction force borne by the hemispherical formation process. The smaller the maximum in-plane shear angle, the greater the reaction force borne during the hemisphere forming, and the more obvious the surface wrinkles of the fabric, the less likely it is to deform. This is because in the hemisphere forming experiment, the formation force in the electric heating fabric can be released through in-plane shear deformation. When the forming displacement was 50 mm along the 45° direction of the fabric, the maximum shear angle occurred at a distance of approximately 79 mm from the apex of the hemisphere. The weft and warp indentation of E1 were 15.8 mm and 16.7 mm, respectively. The weft and warp indentation of the four types of electric heating fabric specimens demonstrated a gradually decreasing trend. This is because the nickel chromium alloy wires with different arrangement and distribution changed the original formation performance of G1 during the forming process, thereby determining the weft and warp indentation of the four types of electric heating fabrics.

Conclusion The research revealed that the main factor affecting the maximum equilibrium temperature change on the surface of electric heating fabrics is the arrangement and distribution of nickel chromium alloy wires. The binding friction between the introduced nickel chromium alloy wire and aramid wire changes the stress situation of the overall electric heating fabric during hemisphere forming. The maximum in-plane shear angle of E1, E2, E3, and E4 specimens is negatively correlated with the hemisphere forming reaction force. That is, the greater the reaction force on the electric heating fabric during hemisphere forming, the less likely it is to deform. After the forming test, the appearance of the fabric shows an increase in wrinkles, an increase in defects, and a decrease in the weft and warp indentation.

Key words: electric heating fabric, tailored fiber placement technology, electrothermal property, hemisphere forming, in-plane shearing

中图分类号: 

  • TS106

图1

TFP工艺设备图"

表1

镍铬合金丝性能参数"

类别 直径/mm 拉伸强度/MPa 电阻值/Ω
标称值 0.08±0.005 830±10 265±5
实测值 0.08±0.002 828±10 255±8

表2

平纹玻璃纤维织物性能参数"

厚度/
mm
密度/(根·(10 cm)-1) 面密度/
(g·m -2)
拉伸强度/MPa
经密 纬密 经向 纬向
0.18±0.005 170±5 165±5 187±1 167±5 156±8

图2

电加热织物的实物图及其排布方式示意图"

图3

测试装置实物图"

图4

电加热织物的电热实验试样图"

图5

半球成型实验"

图6

试样半球成型前后对比图"

图7

10 V电压下4种电加热织物的温度曲线"

表3

10 V电压下4种电加热织物电热性能测试平均值"

试样
编号
实测电
流/A
电阻/
Ω
平衡温
度/℃
电热转换
效率/
(W·℃-1)
温差/
升温速率/
(℃·s-1)
E1 4.57 2.19 159.5 0.33 6.7 4.57
E2 2.97 3.21 92.8 0.42 4.6 3.09
E3 2.01 4.98 66.7 0.45 2.4 1.48
E4 0.49 20.41 31.5 0.52 0.8 0.31

图8

E1在5个时刻的红外热像图"

图9

半球成型性能"

图10

5种织物成型后实物图"

图11

电加热织物表面状态"

图12

G1表面1/4区域"

图13

面内剪切角轮廓图"

图14

面内剪切角沿变形试样选定路径的分布"

图15

最大面内剪切角"

图16

5种织物在成型过程中面内剪切角分布"

图17

缩进距离的轮廓图"

表4

成型实验后织物纬向和经向缩进距离"

试样 纬向缩进距离 经向缩进距离
G1 16.1 17.2
E1 15.8 16.7
E2 15.3 16.1
E3 14.6 15.2
E4 13.4 14.1
[1] 许静娴, 刘莉, 李俊. 镀银纱线电热针织物的开发及性能评价[J]. 纺织学报, 2016, 37 (12): 24-28.
XU Jingxian, LIU Li, LI Jun. Development and perfor mance evaluation of electrically-heated textile based on silver-coated yarn[J]. Journal of Textile Research, 2016, 37 (12): 24-28.
[2] 谌广昌, 纪双英, 赵文明, 等. 直升机旋翼除冰系统加热垫试验研究[J]. 航空工程进展, 2019, 10 (2): 201-205.
CHEN Guangchang, JI Shuangying, ZHAO Wenming, et al. Experimental study on hheating pad of helicopter ro-tor deicing system[J]. Progress in Aviation Engineering, 2019, 10(2):201-205.
[3] YUE Chengming, ZHANG Yingying, LU Weibang, et al. Realizing the curing of polymer composite materials by using electrical resistance heating: a review[J]. Composite Part A, 2022. DOI: 10.1016/j.compositesa.2022.107181.
[4] HAN Shuangye, WEI Haibin, HAN Leilei, et al. Durability and electrical conductivity of carbon fiber cloth/ethylene propylene diene monomer rubber composite for active deicing and snow melting[J]. Polymers, 2019, 11 (12): 2051.
doi: 10.3390/polym11122051
[5] LEE J S, JO H, CHOE H S, et al. Electro-thermal heating element with a nickel-plated carbon fabric for the leading edge of a wing-shaped composite applica-tion[J]. Composite Structures, 2022. DOI: 10.1016/j.compstruct.2022.115510.
[6] 方纾, 刘皓, 刘莉. 柔性电加热元件与智能加热服装服饰研究进展[J]. 北京服装学院学报, 2019, 39(2): 83-94.
FANG Shu, LIU Hao, LIU Li. Research progress of flexible electric heating element and smart heating garments[J]. Joumal of Beijing Institute of Clothing Technology, 2019, 39(2): 83-94.
[7] SYED T A H, ANURA F, MUHAMMAD M. Thermo-mechanical behavior of stainless steel knitted struc-tures[J]. Heat Mass Transfer, 2015, 52: 1-10.
doi: 10.1007/s00231-015-1573-8
[8] ROH J S, KIM S. All-fabric intelligent temperature regulation system for smart clothing applications[J]. Journal of lntelligent Material Systems and Structures, 2016, 27: 1165-1175.
[9] BAI Yanyan, LI Hongxia, GAN Shijin, et al. Flexible heating fabrics with temperature perception based on fine copper wire and fusible interlining fabrics[J]. Measurement, 2018, 122: 192-200.
doi: 10.1016/j.measurement.2018.03.021
[10] 戴海军, 李嘉禄, 孙颖, 等. 纬编双轴向织物/环氧树脂电加热复合材料电热及层间剪切性能[J]. 复合材料学报, 2020, 37(8): 1997-2004.
DAI Haijun, LI Jialu, SUN Ying, et al. Electrothermal and interlaminar shear properties of weft knitted biaxial fabric/epoxy electrically heated composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8):1997-2004.
[11] WU Qian, HU Jinlian. Waterborne polyurethane based thermoelectric composites and their application potential in wearable thermoelectric textiles[J]. Composites Part B, 2016, 107:59-66.
doi: 10.1016/j.compositesb.2016.09.068
[12] MORAES M R, ALVES A C, TOPTAN F, et al. Glycerol/pedot:pss coated woven fabric as flexible heating element on textiles[J]. Journal of Materials Chemistry C, 2017, 5:3807-3822.
doi: 10.1039/C7TC00486A
[13] UHLIG Kai, BITTRICH Lars, SPICKENHEUER Axel, et al. Waviness and fiber volume content analysis in continuous carbon fiber reinforced plastics made by tailored fiber placement[J]. Composite Structures, 2019. DOI: 10.1016/j.compstruct.2019.110910.
[14] 张艳明, 姜亚明, 邱冠雄, 等. 纬编双轴向多层衬纱织物的双半球成型性[J]. 纺织学报, 2005, 26 (3): 54-56.
ZHANG Yanming, JIANG Yaming, QIU Guanxiong, et al. Formability of multi-layered biaxial weft knitted fabrics on double hemisphere[J]. Journal of Textile Research, 2005, 26 (3): 54-56.
[15] JIAO Wei, CHEN Li, XIE Junbo, et al. Deformation mechanisms of 3d ltl woven preforms in hemisphere forming tests[J]. Composite Structures, 2022. DOI: 10.1016/j.compstruct.2021.115156.
[16] RASHIDI A, MILANI A S. Passive control of wrinkles in woven fabric preforms using a geometrical modification of blank holders[J]. Composite Part A, 2018, 105: 300-309.
doi: 10.1016/j.compositesa.2017.11.023
[17] LABANIEH AR, GARNIER C, OUAGNE P, et al. Intra-ply yarn sliding defect in hemisphere preforming of a woven preform[J]. Composite Part A, 2018, 107: 432-446.
doi: 10.1016/j.compositesa.2018.01.018
[18] MEI Ming, HE Yujia, YANG Xujing, et al. Shear deformation characteristics and defect evolution of the biaxial ±45° and 0/90° glass non-crimp fabrics[J]. Composites Science and Technology, 2020. DOI: 10.1016/j.compscitech.2020.108137.
[1] 程子琪, 卢业虎, 许静娴. 电热织物系统热传递模拟及其参数设计[J]. 纺织学报, 2024, 45(02): 206-213.
[2] 贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光, 李时伟. 基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能[J]. 纺织学报, 2023, 44(10): 113-119.
[3] 黄锦波, 邵灵达, 祝成炎. 炭化三维间隔棉织物的制备及其电加热性能[J]. 纺织学报, 2023, 44(04): 139-145.
[4] 姚明远, 刘宁娟, 王嘉宁, 许福军, 刘玮. 功能化碳纳米管复合薄膜及其膜卷纱的电热性能[J]. 纺织学报, 2022, 43(05): 86-91.
[5] 许静娴 刘莉 李俊. 镀银纱线电热针织物的开发及性能评价[J]. 纺织学报, 2016, 37(12): 24-28.
[6] 陈莉 刘皓. 可加热纬编针织物的电热性能[J]. 纺织学报, 2015, 36(04): 50-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!