纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 77-84.doi: 10.13475/j.fzxb.20231005201

• 纺织工程 • 上一篇    下一篇

双等离子体改性超高分子量聚乙烯复合材料的弹道响应

方春月1, 刘紫璇1, 贾立霞1,2, 阎若思1,2()   

  1. 1.河北科技大学 纺织服装学院, 河北 石家庄 050018
    2.河北科技大学 河北省纺织服装工程技术创新中心, 河北 石家庄 050018
  • 收稿日期:2023-10-25 修回日期:2023-12-05 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 阎若思(1988—),女,教授,博士。主要研究方向为纺织结构增强复合材料。E-mail:ruosi.yan@hebust.edu.cn
  • 作者简介:方春月(1999—),女,硕士生。主要研究方向为等离子体改性高性能纤维复合材料。
  • 基金资助:
    国家自然科学基金青年科学基金项目(12202133);河北省高等学校科学研究计划重点项目(ZD2022025);河北省青年拔尖人才支持计划项目(2018-27);河北科技大学基本科研项目国家基本一般专项项目(2023XLM004)

Ballistic response of duoplasmatron-modified polyethylene composites

FANG Chunyue1, LIU Zixuan1, JIA Lixia1,2, YAN Ruosi1,2()   

  1. 1. College of Textile and Garments, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
    2. Hebei Technology Innovation Center for Textile and Garment, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
  • Received:2023-10-25 Revised:2023-12-05 Published:2024-02-15 Online:2024-03-29

摘要:

为揭示双等离子体改性对超高分子量聚乙烯(UHMWPE)复合材料冲击性能的影响,采用真空辅助树脂灌注成型技术(VARI)制成UHMWPE复合材料,借助原子力显微镜等手段对改性前后的纤维表面进行观测,探究复合材料在低速及高速冲击时的抗冲击性能以及防弹机制。低速冲击载荷作为响应值构筑响应曲面模型,高速摄影机捕捉子弹侵彻改性前后复合材料的过程,分析板材的吸能情况并对侵彻后的试样进行表面观测。结果表明:未改性板材通过各层振荡式波动以形成严重分层来耗散能量;改性后的材料能有效地包覆住子弹,背弹面表层纤维呈现原纤化,断口处出现树脂大量富集,阻抗作用增强,吸能值较未改性材料提高45.59%。

关键词: 双等离子体改性, 超高分子量聚乙烯, 复合材料, 抗冲击性能, 防弹性能

Abstract:

Objective Ultra-high molecular weight polyethylene (UHMWPE) fiber has the characteristics of high strength, mode and specific absorption energy, the UHMWPE composites has excellent impact resistance and has a place for military applications. However, UHMWPE fiber itself has high crystallinity and orientation, poor surface polarity, the interface properties formed between fiber and resins is weak, stress cannot be well transmitted, which in turn causes premature failure of the material. In this study, the duoplasmatron surface modification technology was used to improve the chemical bonding and mechanical interlocking ability of fibers and resins, so as to improve the impact resistance of composites.

Method In this study, the UHMWPE fiber fabric with a specification of 180 g/m2 modified by oxygen/argon duoplasmatron, and the vacuum-assisted resin infusion molding technology (VARI) technology was used to prepare composites from the surface modified UHMWPE fabric and epoxy vinyl ester resin. AFM(atomic force microscope), FT-IR(fourier transform infrared reflection)and other test methods were used to characterize the materials before and after modification, the impact load value was used as the response value, and the three-dimensional surface model was constructed by the response surface method to explore the influence of modification on the ballistic resistance of UHMWPE composites, the penetration process was recorded by high-speed cameras.

Results After ionizing the mixed gas, FT-IR results showed that more —OH hydrophilic groups are formed on the surface of the fiber, the hydrophilicity of the surface was improved on the basis of unmodified. The moisture permeability of the first and second modified materials after modification is increased by 33.3% and 30.6% respectively, compared with the unmodified materials. The fiber mean square root roughness value of the fiber modified by double plasma was 124, and the surface morphology was strip-like with terrain, which significantly increased the bonding area and promoted mechanical linkage. In this experiment, the discharge power, time and flow rate were taken as the independent variables, and the impact load value of UHMWPE composites was taken as the response values. Through analysis and optimization, the P = 0.011 2(<0.050 0), which proves that the model is significant. The influence of the three factor levels on the impact of the composites is ranked: flow rate> power > time. After the optimization of the response surface, the optimal power was 193 W, time was 118.29 s, and the flow rate was 14.637 mL/min.

The impact load of the modified material reaches 4 961 N. When the projectile penetrates, the projectile surface is almost presented as fiber shear failure, and the failure surface is smooth, with the deepening of penetration, the projectile velocity decreases, the energy absorption increases, there will be a certain stretching deformation on the back of the fiber impact point. If the target plate is penetrated, there will be a punch material flying out. With the impact point as the center, there is a clear empty drum area next to it, the resin is widely shed, and the target plate fails prematurely. After plasma modification of the material in the projectile impact, t=0.000 3 s can be seen that the instantaneous synergy between the fiber layers is strong, the holding force of the matrix on the fiber increases, and the UHMWPE fiber can play a good performance, when the high-speed bullet hits the surface, the fiber plays the main impedance penetration role, and the bullet is coated into the fiber. Moreover, the energy absorption value of the modified composite was increased by 45.59% compared with the unmodified composites.

Conclusion In this study, AFM, FT-IR and other methods were used to characterize the materials before and after modification, and it was concluded that more —OH hydrophilic groups were formed on the fiber surface, which improved the hydrophilicity of the surface. The moisture permeability of the first and second times was 33.3% and 30.6% higher than that of unmodified materials, respectively. The surface morphology modified by duoplasmatron and the strip-like terrain significantly increase the mating area, and promote the mechanical linkage. By constructing the 3-D surface model, it is concluded that the influence of three factor levels on the impact load resistance of the composites is ranked: flow rate> power > time. When the projectile penetrates the material, it almost appears as fiber shear failure on the projectile surface, and when the high-speed bullet hits the surface, the fiber plays a major impedance penetration role, which can wrap the bullet into the fiber. Moreover, the energy absorption value of the modified composites was increased by 45.59% compared with the unmodified composites.

Key words: duoplasmatron modification, ultra-high molecular weight polyethylene, composite, impact resistance, ballistics testing

中图分类号: 

  • TS15

图1

UHMWPE复合材料的高速冲击过程"

表1

响应曲面试验方案设计及响应值"

试验
编号
功率/
W
时间/
s
流速/
(mL·min-1)
冲击载
荷/kN
1 180 100 15 4.50
2 220 100 15 3.69
3 180 140 15 4.34
4 220 140 15 4.71
5 180 120 12 4.65
6 220 120 12 4.01
7 180 120 18 4.40
8 220 120 18 3.64
9 200 100 12 4.25
10 200 140 12 4.45
11 200 100 18 4.45
12 200 140 18 3.83
13 200 120 15 4.91
14 200 120 15 4.91
15 200 120 15 4.91
16 200 120 15 4.91
17 200 120 15 4.91

图2

改性前后复合材料的透湿性"

图3

改性前后的AFM形貌照片"

图4

3种变量参数的响应曲面及等高线"

图5

低速冲击过程的曲线图和低速冲击的原理图"

图6

高速冲击过程的吸能变化趋势和极限速度的拟合曲线"

表2

2种改性条件下复合材料的弹道冲击结果"

改性条件
(是否改性)
初始速度/
(m·s-1)
剩余速度/
(m·s-1)
吸收
能/J
比吸收能/
(J·m2·kg-1)
冲击后
状态
354.73 316.74 50.21 278.95 侵彻
321.41 270.08 59.76 331.99 侵彻
285.01 229.35 56.35 313.07 侵彻
251.14 175.21 63.73 354.04 侵彻
225.74 122.32 70.85 393.64 侵彻
209.81 68.53 77.41 430.05 侵彻
205.30 0.00 82.97 460.94 镶嵌
190.17 0.00 71.19 395.48 反弹
369.79 323.60 63.04 350.25 侵彻
317.51 256.89 68.53 380.74 侵彻
292.16 220.18 72.59 403.30 侵彻
268.75 175.10 81.83 454.61 侵彻
252.80 114.14 100.16 556.45 侵彻
247.72 0.00 120.79 671.08 镶嵌
242.61 0.00 115.87 643.70 反弹
227.12 0.00 101.54 564.13 反弹

图7

高速冲击过程"

图8

高速冲击后改性前后表面形貌"

图9

改性后材料的背弹面形貌"

[1] TIAN K, TAY T E, TAN V B C, et al. Improving the impact performance and residual strength of carbon fibre reinforced polymer composite through intralaminar hybridization[J]. Composites Part A: Applied Science and Manufacturing, 2023. DOI:10.1016/j.compositesa.2023.107590.
[2] 何业茂, 焦亚男, 周庆, 等. 弹道防护用先进复合材料弹道响应的研究进展[J]. 复合材料学报, 2021, 38(5): 1331-1347.
HE Yemao, JIAO Yanan, ZHOU Qing, et al. Research progress on ballistic response of advanced composite for ballistic protection[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1331-1347.
[3] YANG G J, PARK M, PARK S J. Recent progresses of fabrication and characterization of fibers-reinforced composites: a review[J]. Composites Communications, 2019, 14: 34-42.
doi: 10.1016/j.coco.2019.05.004
[4] CHUKOV D I, ZHEREBTSOV D, OLIFIROV L, et al. Comparison between self-reinforced composites based on ultra-high molecular weight polyethylene fibers and isotropic UHMWPE[J]. Mendeleev Communications, 2020, 30(1): 49-51.
doi: 10.1016/j.mencom.2020.01.016
[5] ZHANG Q Y, QIN Z G, YAN R S, et al. Processing technology and ballistic-resistant mechanism of shear thickening fluid/high-performance fiber-reinforced composites: a review[J]. Composite structures, 2021. DOI:10.1016/J.COMPSTRUCT.2021.113806.
[6] 吕庆涛, 赵世波, 杜培健, 等. 树脂基纺织复合材料疲劳性能表征与分析方法研究现状[J]. 纺织学报, 2021, 42(1): 181-189.
LÜ Qingtao, ZHAO Shibo, DU Peijian, et al. Research status of fatigue properties characterization and analysis methods of resin matrix composites[J]. Journal of Textile Research, 2021, 42(1): 181-189.
doi: 10.1177/004051757204200310
[7] WU M J, JIA L X, LU S L, et al. Interfacial performance of high-performance fiber-reinforced composites improved by cold plasma treatment: a review[J]. Surfaces and Interfaces, 2021. DOI:10.1016/J.SURFIN.2021.101077.
[8] CHHETRI S, BOUGHERARA H. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties[J]. Composites Part A: Applied science and manufacturing, 2021.DOI:10.1016/j.compositesa.2020.106146.
[9] 刘东炎, 郑成燕, 王晓旭, 等. 超高分子量聚乙烯织物/聚脲柔性复合材料的抗破片侵彻机制[J]. 纺织学报, 2023, 44(3): 79-87.
LIU Dongyan, ZHENG Chengyan, WANG Xiaoxu, et al. Projectile penetration mechanism of ultra-high molecular weight polyethylene fabric/polyurea flexible composites[J]. Journal of Textile Research, 2023, 44(3): 79-87.
[10] YANG Z M, LIU J X, WANG F C, et al. Effect of fiber hybridization on mechanical performances and impact behaviors of basalt fiber/UHMWPE fiber reinforced epoxy composites[J]. Composite structures, 2019, 229: 1-13.
[11] WU M J, JIA L X, CHEN Z H, et al. Synergetic enhancement of interfacial properties and impact resistant of UHMWPE fiber reinforced composites by oxygen plasma modification[J]. Composite structures, 2022. DOI:10.1016/j.compstruct.2022.115663.
[12] 徐铭涛, 嵇宇, 仲越, 等. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(9): 203-210.
XU Mingtao, JI Yu, ZHONG Yue, et al. Review on toughening modification of carbon fiber/epoxy resin composites[J]. Journal of Textile Research, 2022, 43(9): 203-210.
[13] FANG C Y, ZHOU Y H, JIA L X, et al. Interfacial properties of multicomponent plasma-modified high-performance fiber-reinforced composites: a review[J]. Polymer Composites, 2022, 43(8): 4866.
doi: 10.1002/pc.v43.8
[14] KARTHIKEYAN K, RUSSELL B. Polyethylene ballistic laminates: failure mechanics and interface effect[J]. Materials & Design, 2014, 63: 115-125.
doi: 10.1016/j.matdes.2014.05.069
[1] 谷元慧, 王曙东, 张典堂. 基于多尺度模型的编织复合材料圆管扭转行为有限元模拟[J]. 纺织学报, 2023, 44(12): 88-95.
[2] 李麒阳, 季诚昌, 郗欣甫, 孙以泽. 大尺寸异形结构芯模编织策略及纱线轨迹预测[J]. 纺织学报, 2023, 44(10): 188-195.
[3] 左祺, 吴华伟, 王春红, 杜娟娟. 纱线结构对苎麻短纤纱复合材料拉伸性能的影响[J]. 纺织学报, 2023, 44(10): 81-89.
[4] 钱晨, 黄博翔, 李永强, 万军民, 傅雅琴. 增强纤维用上浆剂的耐高温化改性研究进展[J]. 纺织学报, 2023, 44(09): 232-242.
[5] 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98.
[6] 汪泽幸, 周衡书, 杨敏, 谭冬宜. 不同循环加载路径下黄麻织物/聚乙烯复合材料的变形特性[J]. 纺织学报, 2023, 44(09): 99-107.
[7] 张杏, 叶伟, 龙啸云, 曹海建, 孙启龙, 马岩, 王征. 超高分子量聚乙烯纤维织物/热塑性聚氨酯复合材料的界面黏结性能[J]. 纺织学报, 2023, 44(08): 143-150.
[8] 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56.
[9] 陈露, 吴孟锦, 贾立霞, 阎若思. 氧等离子体改性超高分子量聚乙烯纤维复合材料层间损伤声发射特征分析[J]. 纺织学报, 2023, 44(07): 116-125.
[10] 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131.
[11] 杨金, 李麒阳, 季霞, 孙以泽. 复合材料编织-缠绕-拉挤系统建模及其控制策略[J]. 纺织学报, 2023, 44(07): 199-206.
[12] 李皎, 陈利, 姚天磊, 陈小明. 类回转预制体针刺机器人系统设计[J]. 纺织学报, 2023, 44(07): 207-213.
[13] 夏良君, 曹根阳, 刘欣, 徐卫林. 高性能纤维及其制品颜色构建的研究进展[J]. 纺织学报, 2023, 44(06): 1-9.
[14] 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(06): 21-27.
[15] 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!