纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 85-92.doi: 10.13475/j.fzxb.20231005501
南静静1,2, 杜明娟3, 孟家光1,2, 余灵婕1,2, 支超1,2()
NAN Jingjing1,2, DU Mingjuan3, MENG Jiaguang1,2, YU Lingjie1,2, ZHI Chao1,2()
摘要:
针对现阶段潜艇用水下吸声材料的低厚度强低频吸声的性能诉求,基于三维间隔织物,将兼具多孔和共振吸声特性的类填充微穿孔板(F-MPPL)结构引入常规空心微珠填充水下吸声材料(HBF复合材料)中,设计出新型三相复合水下吸声材料(F-MPPL复合材料)。鉴于海中复杂环境对水下吸声材料声学性能的影响,采用人工海水浸泡的方法对F-MPPL复合材料进行海水老化,结果发现老化12个月后的F-MPPL复合材料平均吸声系数下降了13.6%。同时,基于海水老化下孔隙率和穿孔率的变化对最终宏观模型仿真结果的影响,对F-MPPL复合材料的水下吸声性能寿命进行预测发现,模型可准确预测材料吸声峰值的位置,但对材料吸声系数峰值的大小预测稍有偏差。研究结果可为各类水下吸声材料的吸声性能老化研究提供实践经验,并为F-MPPL结构在海水老化下的长期寿命预测及性能优化提供理论参考。
中图分类号:
[1] | JAYAKUMARI V G, SHAMSUDEEN R K, RAJESWARI R, et al. Viscoelastic and acoustic characterization of polyurethane-based acoustic absorber panels for underwater applications[J]. Journal of Applied Polymer Science, 2019. DOI: 10.1002/app.47165. |
[2] | 王育人, 缪旭弘, 姜恒, 等. 水下吸声机理与吸声材料[J]. 力学进展, 2017, 47(1): 92-121. |
WANG Yuren, MU Xuhong, JIANG Heng, et al. Underwater sound absorption mechanism and sound-absorbing materials[J]. Advances in Mechanics, 2017, 47(1): 92-121. | |
[3] | LEE Dongwoo, JANG Yeongtae, PARK Jeonghoon, et al. Underwater stealth metasurfaces composed of split-orifice-conduit hybrid resonators[J]. Journal of Applied Physics, 2021. DOI: 10.1063/5.0042246. |
[4] |
MENG H, WEN J, ZHAO H, et al. Analysis of absorption performances of anechoic layers with steel plate backing[J]. Journal of the Acoustical Society of America, 2012, 132(1): 69-75.
doi: 10.1121/1.4728198 pmid: 22779456 |
[5] | WANG Zonghui, HUANG Yixing, ZHANG Xiaowei, et al. Broadband underwater sound absorbing structure with gradient cavity shaped polyurethane composite array supported by carbon fiber honeycomb[J], Journal of Sound and Vibration, 2020. DOI:10.1016/j.jsv.2020.115375. |
[6] |
JUHYUK Park, SEI Hyun Yang, KYUNG Suh Minn. Design and numerical analysis of syntactic hybrid foam for superior sound absorption[J]. Materials and Design, 2018, 142: 212-220.
doi: 10.1016/j.matdes.2018.01.040 |
[7] | FU Y, KABIR I I, YEOH G H, et al. A review on polymer-based materials for underwater sound absorp-tion[J]. Polymer Testing, 2021. DOI:10.1016/j.polymertesting.2021.107115. |
[8] | 马大猷. 微穿孔板吸声结构的理论和设计[J]. 中国科学, 1975, 18(1): 38-50. |
MA Dayou. Theory and design of microperforated plate sound-absorbing structures[J]. Chinese Science, 1975, 18(1): 38-50. | |
[9] | YU W, ZHANG X, DONG Q. Application of Microperforated-panel absorber in communication products[J]. Journal of Applied Mathematics & Physics, 2018, 6(1): 51-57. |
[10] |
ZHAO X, FAN X. Enhancing low frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plates[J]. Applied Acoustics, 2015, 88: 123-128.
doi: 10.1016/j.apacoust.2014.08.015 |
[11] | 王泽锋, 胡永明, 倪明, 等. 微穿孔板吸声结构水下应用研究[J]. 应用声学, 2008, 27(3): 161-166. |
WANG Zefeng, HU Yongming, NI Ming, et al. Study on underwater application of microperforated plate acoustic structure[J]. Applied Acoustics, 2008, 27(3): 161-166.
doi: 10.1016/0003-682X(89)90058-3 |
|
[12] | 罗忠, 朱锡, 梅志远, 等. 水下微穿孔吸声体结构设计与试验研究[J]. 声学学报, 2010, 35(3): 329-334. |
LUO Zhong, ZHU Xi, MEI Zhiyuan, et al. Structural design and experimental study of underwater microperforated acoustic absorbers[J]. Journal of Acoustics, 2010, 35(3): 329-334. | |
[13] | 李晨曦, 徐颖, 李旦望. 羊毛纤维对薄微穿孔板吸声性能的影响[J]. 西北工业大学学报, 2011, 29(2): 263-267. |
LI Chenxi, XU Ying, LI Danwang. Influence of wool fiber on the acoustic performance of thin microperforated plates[J]. Journal of Northwestern Polytechnical University, 2011, 29(2): 263-267. | |
[14] | BAZLI M, LI Y L, ZHAO X L, et al. Durability of seawater and sea sand concrete filled filament wound FRP tubes under seawater environments[J]. Composites Part B Engineering, 2020. DOI: 10.1016/j.compositesb.2020.108409. |
[15] | FENG G Y, ZHU D J, GUO S C, et al. A review on mechanical properties and deterioration mechanisms of FRP bars under severe environmental and loading conditions[J]. Cement and Concrete Composites, 2022. DOI: 10.1016/j.cemconcomp.2022.104758. |
[16] | YI Y, ZHU D, RAHMAN Z, et al. Tensile properties deterioration of BFRP bars in simulated pore solution and real seawater sea sand concrete environment with varying alkalinities[J]. Composites Part B: Engineering, 2022. DOI: 10.1016/j.compositesb.2022.110115. |
[17] | SUKUR E F, ONAL G. Long-term Salt-water durability of GNPs reinforced basalt-epoxy multiscale composites for marine applications[J]. Tribology International, 2021. DOI: 10.1016/j.triboint.2021.106910. |
[18] | LI Hailin, ZHANG Kaifu, FAN Xintian, et al. Effect of seawater ageing with different temperatures and concentrations on static/dynamic mechanical properties of carbon fiber reinforced polymer composites[J]. Composites Part B-Engineering, 2019. DOI:10.1016/j.compositesb.2019.106910. |
[19] | 文庆珍, 肖玲, 李瑜, 等. TZLD橡胶基体水声吸声复合材料在海水中的寿命预测[J]. 高分子材料科学与工程, 2017, 33(2):100-104. |
WEN Qingzhen, XIAO Ling, LI Yu, et al. Lifetime prediction of TZLD rubber matrix hydroacoustic acoustic composites in seawater[J]. Polymer Materials Science and Engineering, 2017, 33(2):100-104. | |
[20] | 南静静, 杜明娟, 孟家光, 等. 间隔织物/聚氨酯水声材料的海水老化研究[J]. 纺织科学与工程学报, 2023, 40(4):53-58. |
NAN Jingjing, DU Mingjuan, MENG Jiaguang, et al. Study on seawater aging of spacer fabric/polyurethane underwater sound-absorbing material[J]. Journal of Textile Science and Engineering, 2023, 40(4):53-58. |
[1] | 黄锦波, 邵灵达, 祝成炎. 炭化三维间隔棉织物的制备及其电加热性能[J]. 纺织学报, 2023, 44(04): 139-145. |
[2] | 周志芳, 周赳, 彭稀, 黄锦波. 三维间隔空芯可变提花织物的织造工艺设计[J]. 纺织学报, 2023, 44(03): 67-72. |
[3] | 郭郎, 王丽琴, 赵星. 丝织品的热老化及其寿命预测[J]. 纺织学报, 2020, 41(07): 47-52. |
[4] | 邓宗才 董智福. 高强聚丙烯纺粘针刺土工布的耐久性能[J]. 纺织学报, 2018, 39(11): 61-67. |
[5] | 李晓英 蒋高明 马丕波 聂小林. 三维横编间隔织物的编织工艺及其性能[J]. 纺织学报, 2016, 37(07): 66-70. |
[6] | 张弦 王廷荣. 纯棉机织物寿命预测[J]. 纺织学报, 2013, 34(3): 40-43. |
|