纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 85-92.doi: 10.13475/j.fzxb.20231005501

• 纺织工程 • 上一篇    下一篇

海水老化下类填充微穿孔板结构水下吸声材料的性能及其寿命预测

南静静1,2, 杜明娟3, 孟家光1,2, 余灵婕1,2, 支超1,2()   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
    3.东华大学 纺织学院, 上海 201620
  • 收稿日期:2023-10-16 修回日期:2023-11-16 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 支超(1986—),男,副教授,博士。主要研究方向为针织立体结构增强高性能复合材料。E-mail:zhichao@xpu.edu.cn
  • 作者简介:南静静(1999—),女,硕士生。主要研究方向为水下吸声材料的开发。
  • 基金资助:
    国家自然科学基金项目(51903199);陕西省重点研发计划项目(2023-YBGY-490);陕西省创新能力支撑计划项目(2022KJXX-40);陕西高校青年杰出人才支持计划项目(2020);陕西省教育厅科研计划项目(23JP054)

Effect of seawater aging on performance of filled-microperforated plate-like underwater sound absorption materials and durability prediction

NAN Jingjing1,2, DU Mingjuan3, MENG Jiaguang1,2, YU Lingjie1,2, ZHI Chao1,2()   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    3. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2023-10-16 Revised:2023-11-16 Published:2024-02-15 Online:2024-03-29

摘要:

针对现阶段潜艇用水下吸声材料的低厚度强低频吸声的性能诉求,基于三维间隔织物,将兼具多孔和共振吸声特性的类填充微穿孔板(F-MPPL)结构引入常规空心微珠填充水下吸声材料(HBF复合材料)中,设计出新型三相复合水下吸声材料(F-MPPL复合材料)。鉴于海中复杂环境对水下吸声材料声学性能的影响,采用人工海水浸泡的方法对F-MPPL复合材料进行海水老化,结果发现老化12个月后的F-MPPL复合材料平均吸声系数下降了13.6%。同时,基于海水老化下孔隙率和穿孔率的变化对最终宏观模型仿真结果的影响,对F-MPPL复合材料的水下吸声性能寿命进行预测发现,模型可准确预测材料吸声峰值的位置,但对材料吸声系数峰值的大小预测稍有偏差。研究结果可为各类水下吸声材料的吸声性能老化研究提供实践经验,并为F-MPPL结构在海水老化下的长期寿命预测及性能优化提供理论参考。

关键词: 微穿孔板结构, 三维间隔织物, 海水老化, 水下吸声性能, 寿命预测, 复合水下吸声材料

Abstract:

Objective Submarines are symbolic to a country's sea power. The long acoustic wave transmission distance, low cost of underwater acoustic communication, high flexibility and stable transmission are the only effective and mature means of underwater wireless communication. In order to ensure the operational advantages of submarines, reduce the threat of sonar detection on submarines, this research aims to improve the submarine underwater acoustic materials in terms of low thickness, strong and low-frequency acoustic performance by employing the filled microperforated plate (F-MPPL) structure into the conventional hollow bead-filled underwater acoustic material (HBF composite).

Method We have designed a new three-phase composite underwater acoustic material (F-MPPL composite) based on 3-D spacer fabrics by introducing the filled-microperforated plate-like (F-MPPL) structure, which is both porous and resonance acoustic absorption, into the conventional hollow bead-filled underwater acoustic materials (HBF composites). In view of the influence of the complex environment in the sea on the acoustic performance of underwater acoustic materials, artificial seawater immersion was used for seawater ageing of F-MPPL composites. Meanwhile, the lifetime prediction of the F-MPPL composites was explored based on the effect of porosity and perforation rate under seawater ageing on the final macroscopic model simulation results.

Results The introduction of the F-MPPL structure significantly improved the underwater acoustic absorption performance of the F-MPPL composites with low thicknesses. The average sound absorption of the F-MPPL composites was higher than that of the HBF composites, and the peak values of the absorption coefficients were shifted to lower frequencies compared to that of HBF composites. The peak sound absorption coefficients of both the F-MPPL and HBF composites decreased gradually with the increase of immersion time and moved towards high frequencies, which were attributed to the increase of porosity and perforation rate, respectively. After 12 months of immersion, the average decrease in sound absorption coefficient of F-MPPL composites was 7.35% smaller than that of HBF composites, attributing to the fact that the structural damage of the F-MPPL composites was smaller than that of the HBF composites after aging. The F-MPPL structure was still retained inside the material after the 12 months of aging.

The macroscopic composite acoustic absorption model established in this research well predicted the acoustic absorption of F-MPPL composites after 12 months of aging and the main absorption frequency bands. The comparison between the finite element simulation and the results of pulsed acoustic tube hydroacoustic test showed that the macroscopic composite acoustic absorption model accurately predict the acoustic absorption performance of F-MPPL composites in the underwater band of more than 1 000 Hz and accurately predict the peak location 1 900 Hz. However, the peak of the absorption of F-MPPL composites in the frequency band of 500 Hz or so was over predicted and the peak prediction of the absorption coefficient was low.

Conclusion The underwater acoustic absorption performance of F-MPPL composites is better than that of HBF composites before and after aging due to the introduction of three-dimensional spacer fabrics. The prediction results of the macroscopic composite acoustic absorption model for F-MPPL composites are in general agreement with the experimental measurements, it accurately predicted the acoustic absorption performance of F-MPPL composites in the underwater band of more than 1 000 Hz and accurately predict the peak location 1 900 Hz. Therefore, it can be concluded that the macro-composite acoustic absorption model for F-MPPL composites established in this study is valid and can predict the aqueous acoustic response of F-MPPL composites in the frequency range of 500-4 000 Hz. This study provides practical experience for the aging study of the acoustic performance of various types of underwater acoustic materials, and provides theoretical support for the durability prediction and performance optimization of F-MPPL structures under seawater aging.

Key words: microperforated plate structure, three-dimensional spacer fabric, seawater aging, underwater sound absorption performance, durability prediction, composite underwater acoustic material

中图分类号: 

  • TS186.1

图1

制备过程和海水老化"

图2

海水老化下复合材料的吸声系数和吸声机制示意图"

表1

等效流体模型传输参数计算结果"

时间/月 黏性特征长
度/μm
热特征长
度/μm
曲折度 静态流阻率1/
(Pa·s·m-2)
静态流阻率2/
(Pa·s·m-2)
孔隙率/
%
平均孔径/
μm
0 73.17 121.07 2.58 49 731.68 60 59.33 100.00
4 64.76 124.91 1.94 53 496.51 60 69.21 112.78
8 58.74 125.33 1.62 53 991.84 60 70.27 114.16
12 55.27 127.53 1.24 59 840.92 60 77.38 121.90

图3

宏观复合吸声模型"

图4

F-MPPL复合材料各阶段的SEM照片"

图5

F-MPPL复合材料老化前和老化12个月后的声压分布"

图6

F-MPPL复合材料老化12个月后吸声系数的模拟值与实验比较"

[1] JAYAKUMARI V G, SHAMSUDEEN R K, RAJESWARI R, et al. Viscoelastic and acoustic characterization of polyurethane-based acoustic absorber panels for underwater applications[J]. Journal of Applied Polymer Science, 2019. DOI: 10.1002/app.47165.
[2] 王育人, 缪旭弘, 姜恒, 等. 水下吸声机理与吸声材料[J]. 力学进展, 2017, 47(1): 92-121.
WANG Yuren, MU Xuhong, JIANG Heng, et al. Underwater sound absorption mechanism and sound-absorbing materials[J]. Advances in Mechanics, 2017, 47(1): 92-121.
[3] LEE Dongwoo, JANG Yeongtae, PARK Jeonghoon, et al. Underwater stealth metasurfaces composed of split-orifice-conduit hybrid resonators[J]. Journal of Applied Physics, 2021. DOI: 10.1063/5.0042246.
[4] MENG H, WEN J, ZHAO H, et al. Analysis of absorption performances of anechoic layers with steel plate backing[J]. Journal of the Acoustical Society of America, 2012, 132(1): 69-75.
doi: 10.1121/1.4728198 pmid: 22779456
[5] WANG Zonghui, HUANG Yixing, ZHANG Xiaowei, et al. Broadband underwater sound absorbing structure with gradient cavity shaped polyurethane composite array supported by carbon fiber honeycomb[J], Journal of Sound and Vibration, 2020. DOI:10.1016/j.jsv.2020.115375.
[6] JUHYUK Park, SEI Hyun Yang, KYUNG Suh Minn. Design and numerical analysis of syntactic hybrid foam for superior sound absorption[J]. Materials and Design, 2018, 142: 212-220.
doi: 10.1016/j.matdes.2018.01.040
[7] FU Y, KABIR I I, YEOH G H, et al. A review on polymer-based materials for underwater sound absorp-tion[J]. Polymer Testing, 2021. DOI:10.1016/j.polymertesting.2021.107115.
[8] 马大猷. 微穿孔板吸声结构的理论和设计[J]. 中国科学, 1975, 18(1): 38-50.
MA Dayou. Theory and design of microperforated plate sound-absorbing structures[J]. Chinese Science, 1975, 18(1): 38-50.
[9] YU W, ZHANG X, DONG Q. Application of Microperforated-panel absorber in communication products[J]. Journal of Applied Mathematics & Physics, 2018, 6(1): 51-57.
[10] ZHAO X, FAN X. Enhancing low frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plates[J]. Applied Acoustics, 2015, 88: 123-128.
doi: 10.1016/j.apacoust.2014.08.015
[11] 王泽锋, 胡永明, 倪明, 等. 微穿孔板吸声结构水下应用研究[J]. 应用声学, 2008, 27(3): 161-166.
WANG Zefeng, HU Yongming, NI Ming, et al. Study on underwater application of microperforated plate acoustic structure[J]. Applied Acoustics, 2008, 27(3): 161-166.
doi: 10.1016/0003-682X(89)90058-3
[12] 罗忠, 朱锡, 梅志远, 等. 水下微穿孔吸声体结构设计与试验研究[J]. 声学学报, 2010, 35(3): 329-334.
LUO Zhong, ZHU Xi, MEI Zhiyuan, et al. Structural design and experimental study of underwater microperforated acoustic absorbers[J]. Journal of Acoustics, 2010, 35(3): 329-334.
[13] 李晨曦, 徐颖, 李旦望. 羊毛纤维对薄微穿孔板吸声性能的影响[J]. 西北工业大学学报, 2011, 29(2): 263-267.
LI Chenxi, XU Ying, LI Danwang. Influence of wool fiber on the acoustic performance of thin microperforated plates[J]. Journal of Northwestern Polytechnical University, 2011, 29(2): 263-267.
[14] BAZLI M, LI Y L, ZHAO X L, et al. Durability of seawater and sea sand concrete filled filament wound FRP tubes under seawater environments[J]. Composites Part B Engineering, 2020. DOI: 10.1016/j.compositesb.2020.108409.
[15] FENG G Y, ZHU D J, GUO S C, et al. A review on mechanical properties and deterioration mechanisms of FRP bars under severe environmental and loading conditions[J]. Cement and Concrete Composites, 2022. DOI: 10.1016/j.cemconcomp.2022.104758.
[16] YI Y, ZHU D, RAHMAN Z, et al. Tensile properties deterioration of BFRP bars in simulated pore solution and real seawater sea sand concrete environment with varying alkalinities[J]. Composites Part B: Engineering, 2022. DOI: 10.1016/j.compositesb.2022.110115.
[17] SUKUR E F, ONAL G. Long-term Salt-water durability of GNPs reinforced basalt-epoxy multiscale composites for marine applications[J]. Tribology International, 2021. DOI: 10.1016/j.triboint.2021.106910.
[18] LI Hailin, ZHANG Kaifu, FAN Xintian, et al. Effect of seawater ageing with different temperatures and concentrations on static/dynamic mechanical properties of carbon fiber reinforced polymer composites[J]. Composites Part B-Engineering, 2019. DOI:10.1016/j.compositesb.2019.106910.
[19] 文庆珍, 肖玲, 李瑜, 等. TZLD橡胶基体水声吸声复合材料在海水中的寿命预测[J]. 高分子材料科学与工程, 2017, 33(2):100-104.
WEN Qingzhen, XIAO Ling, LI Yu, et al. Lifetime prediction of TZLD rubber matrix hydroacoustic acoustic composites in seawater[J]. Polymer Materials Science and Engineering, 2017, 33(2):100-104.
[20] 南静静, 杜明娟, 孟家光, 等. 间隔织物/聚氨酯水声材料的海水老化研究[J]. 纺织科学与工程学报, 2023, 40(4):53-58.
NAN Jingjing, DU Mingjuan, MENG Jiaguang, et al. Study on seawater aging of spacer fabric/polyurethane underwater sound-absorbing material[J]. Journal of Textile Science and Engineering, 2023, 40(4):53-58.
[1] 黄锦波, 邵灵达, 祝成炎. 炭化三维间隔棉织物的制备及其电加热性能[J]. 纺织学报, 2023, 44(04): 139-145.
[2] 周志芳, 周赳, 彭稀, 黄锦波. 三维间隔空芯可变提花织物的织造工艺设计[J]. 纺织学报, 2023, 44(03): 67-72.
[3] 郭郎, 王丽琴, 赵星. 丝织品的热老化及其寿命预测[J]. 纺织学报, 2020, 41(07): 47-52.
[4] 邓宗才 董智福. 高强聚丙烯纺粘针刺土工布的耐久性能[J]. 纺织学报, 2018, 39(11): 61-67.
[5] 李晓英 蒋高明 马丕波 聂小林. 三维横编间隔织物的编织工艺及其性能[J]. 纺织学报, 2016, 37(07): 66-70.
[6] 张弦 王廷荣. 纯棉机织物寿命预测[J]. 纺织学报, 2013, 34(3): 40-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!