纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 1-10.doi: 10.13475/j.fzxb.20221106101

• 纤维材料 •    下一篇

树枝状磺化聚醚砜纤维基复合固态电解质的制备及其性能

杨琪1,2, 邓南平1,2(), 程博闻2, 康卫民1,2   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 分离膜与膜过程国家重点实验室, 天津 300387
  • 收稿日期:2022-11-22 修回日期:2023-08-03 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 邓南平
  • 作者简介:杨琪(1995—),女,博士。主要研究方向为磺化聚醚砜纳米纤维基固态电解质及其在全固态锂金属电池中的应用。
  • 基金资助:
    国家自然科学基金项目(51973157);天津市科技计划项目(19PTSYJC00010)

Preparation and application properties of dendritic sulfonated polyethersulfone fiber based composite solid electrolyte

YANG Qi1,2, DENG Nanping1,2(), CHENG Bowen2, KANG Weimin1,2   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
  • Received:2022-11-22 Revised:2023-08-03 Published:2024-03-15 Online:2024-04-15
  • Contact: DENG Nanping

摘要:

为解决应用于全固态锂金属电池中固态有机电解质离子电导率较低和力学性能较弱的问题,采用静电纺丝技术制备了树枝状磺化聚醚砜(SPES)纳米纤维膜,将其与聚氧化乙烯(PEO)结合制备复合固态电解质,并应用于全固态锂金属电池中。探讨了纺丝工艺对纳米纤维形貌的影响,在最佳的静电纺丝工艺参数下,研究了SPES纳米纤维膜对复合固态电解质结晶度、离子电导率、力学性能以及电化学性能的影响。结果表明: 在四丁基六氟磷酸铵质量分数为2%,静电纺丝电压为30 kV,接收距离为15 cm时,制备的树枝状SPES纳米纤维膜具有最好的形貌,将PEO浇筑在该纳米纤维膜上获得的复合固态电解质其离子电导率为8.13×10-5 S/cm(30 ℃),断裂强度为 5.1 MPa, 且可使对称电池在0.1 mA·h/cm2下稳定循环198 h,使LiFePO4/Li电池在循环400圈后仍保持着128.6 mA·h/g的放电比容量;SPES纳米纤维膜因破坏PEO的结晶区且能构成三维离子传输路径,不仅提高了复合固态电解质的离子电导率,还使复合固态电解质具有优异的力学强度,可满足高性能全固态锂金属电池的应用需求。

关键词: 复合固态电解质, 锂金属电池, 静电纺丝, 磺化聚醚砜纤维, 聚氧化乙烯, 纳米纤维

Abstract:

Objective The conventional liquid electrolyte is easy to leak and flammable, which brings potential safety risks to the actual application of lithium metal batteries. Replacing liquid electrolyte with all-solid-state electrolyte has become one of the most feasible methods. However, solid polymer electrolytes are limited by low ionic conductivity and poor mechanical strength. For solving the two problems of solid polymer electrolyte at the same time, nanofiber membranes with high strength are used for modification.

Method Dendritic sulfonated polyethersulfone nanofibers (SPES) were prepared by electrospinning technology. They were introduced into polyethylene oxide (PEO) to prepare composite solid electrolytes and applied in high-performance all-solid-state lithium metal batteries. The influences of spinning solution concentration, salt addition, electrospinning voltage and receiving distance on fiber morphologies were explored and analyzed. Moreover, the influences of SPES nanofiber membrane on the crystallinity, ionic conductivity, mechanical properties, and electrochemical properties of composite solid electrolyte were also studied under the optimal spinning process.

Results When the spinning solution concentration was 23%, the electrospinning voltage was 30 kV and the receiving distance was 15 cm, the obtained SPES nanofibers had the best morphology among them. Based on obtaining the optimal spinning solution concentration of ordinary SPES nanofibers at 23%, the influence of ammonium tetrabutyl hexafluorophosphate on fiber morphologies were investigated. It was found that the optimum parameters for preparing dendritic SPES nanofibers were salt dosage of 2%, electrospinning voltage of 30 kV and receiving distance of 15 cm. After the nanofibers and PEO were constructed into the composite electrolytes, both the ordinary SPES nanofibers and the dendritic SPES nanofibers caused the crystallization peak of PEO in the composite electrolyte be smaller than that of pure PEO electrolyte, indicating that the interlaced nanofibers were conducive to destroying the crystallization zone of PEO matrix. The destruction of nanofibers with two structures to the crystallinity of PEO was also reflected by the ionic conductivity of the electrolyte. At 30 ℃, the ionic conductivity of the electrolyte containing ordinary SPES nanofibers was 6.92×10-5 S/cm. The ionic conductivity of the electrolyte containing dendritic SPES nanofibers was as high as 8.13×10-5 S/cm at 30 ℃, which is even 1.4 times that of pure PEO electrolyte (5.62×10-5 S/cm). In addition, the ordinary SPES nanofiber membranes and the dendritic SPES nanofiber membrane can provide skeleton support for the PEO matrix, and the mechanical strength of the electrolyte containing the two types of fiber membranes was as high as 4.8 MPa and 5.1 MPa, respectively. In the lithiumi/lithium symmetric battery, the electrolytes composed of ordinary SPES nanofiber membrane and dendritic SPES nanofiber membrane could maintain the battery cycling for 180 h and 198 h, respectively. But the pure PEO electrolyte had a short circuit during a 65 h cycle at 0.1 mA·h/cm2. When LiFePO4/Li was assembled with an electrolyte containing of the dendritic SPES nanofiber membranes, the electrolyte enabled the battery to maintain a high specific discharge capacity of 128.6 mA·h/g after 400 cycles.

Conclusion From the tested results, it can be seen that both the ordinary SPES nanofiber membrane and the dendritic SPES nanofiber membrane can damage the crystalline region of the PEO matrix to a certain extent, thereby greatly enhancing the ionic conductivity of the prepared composite solid electrolyte. In addition, as the support skeleton of PEO matrix, both fiber membranes can improve the mechanical strength of composite solid electrolyte. However, the modification effect of dendritic SPES nanofiber membrane on electrolyte is more excellent. This is because dendritic SPES nanofiber has more branch fibers than SPES nanofiber, which destroys the crystalline region of PEO to a greater extent and is more helpful for constructing the enough three-dimenstional ion transport pathway. Therefore, the dendritic SPES nanofiber membrane modified electrolyte can better meet the actual application requirements of high-performance all-solid-state lithium metal batteries.

Key words: composite solid electrolyte, lithium metal battery, electrospinning, sulfonated polyethersulfone fiber, polyethylene oxide, nanofiber

中图分类号: 

  • TM911

图1

不同纺丝液质量分数下SPES纳米纤维膜的SEM照片及其纤维直径分布"

图2

不同静电纺丝电压下SPES纳米纤维膜的SEM照片及其纤维直径分布"

图3

不同接收距离下SPES纳米纤维膜的SEM照片及其纤维直径分布"

图4

不同TABHFP质量分数下树枝状SPES纳米纤维膜的SEM照片"

图5

不同静电纺丝电压下树枝状SPES纳米纤维膜的SEM照片"

图6

不同接收距离下树枝状SPES纳米纤维膜的SEM照片"

图7

不同电解质的X射线衍射谱图"

图8

不同电解质的离子电导率曲线"

图9

不同电解质的应力-应变曲线"

图10

由不同电解质组装的Li/Li对称电池的恒流充放电性能"

图11

由不同电解质组装的LiFePO4/Li电池在50 ℃下的阻抗谱"

图12

由2#电解质组装的LiFePO4/Li电池在0.5 C和50 ℃下的循环稳定性能"

图13

由2#电解质组装的LiFePO4/Li电池在0.2 C和40 ℃下的循环稳定性能"

[1] CHEN R, LI Q, YU X, et al. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces[J]. Chemical Reviews, 2020, 120(14): 6820-6877.
doi: 10.1021/acs.chemrev.9b00268 pmid: 31763824
[2] WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
doi: 10.1016/j.jpowsour.2012.02.038
[3] LI Y, ZHANG B, YUAN Q. A comparative study of long and short GRBs: II: a multiwavelength method to distinguish type II (massive star) and type I (compact star) GRBs[J]. The Astrophysical Journal, 2020. DOI: 10.3847/1538-4357/ab96b8.
[4] 宋鑫, 高志浩, 骆林, 等. 全固态锂电池有机-无机复合电解质研究进展[J]. 复合材料学报, 2023, 40(4): 1857-1878.
SONG Xin, GAO Zhihao, LUO Lin, et al. Research progress of organic-inorganic composite electrolytes for all-solid-state lithium batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1857-1878.
[5] ZHU L, ZHU P, FANG Q, et al. A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery[J]. Electrochimica Acta, 2018, 292: 718-726.
doi: 10.1016/j.electacta.2018.10.005
[6] RATNER M A, SHRIVER D F. Ion transport in solvent-free polymers[J]. Chemical Reviews, 1988, 88: 109-124.
doi: 10.1021/cr00083a006
[7] LI Z, HUANG H M, ZHU J K, et al. Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 784-791.
[8] PAN Q, ZHENG Y, KOTA S, et al. 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries[J]. Nanoscale Advances, 2019, 1(1): 395-402.
doi: 10.1039/c8na00206a pmid: 36132461
[9] WANG W, YI E, FICI A J, et al. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles[J]. The Journal of Physical Chemistry C, 2017, 121(5): 2563-2573.
doi: 10.1021/acs.jpcc.6b11136
[10] LIU L, LYU J, MO J, et al. Comprehensively-upgraded polymer electrolytes by multifunctional aramid nanofibers for stable all-solid-state Li-ion batteries[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2019.104398.
[11] WANG G, HE P, FAN L Z. Asymmetric polymer electrolyte constructed by metal-organic framework for solid-state, dendrite-free lithium metal battery[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202007198.
[12] TIAN L, LIU Y, SU Z, et al. A lithiated organic nanofiber-reinforced composite polymer electrolyte enabling Li-ion conduction highways for solid-state lithium metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(42): 23882-23890.
doi: 10.1039/D1TA06269G
[13] LI D, CHEN L, WANG T, et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7069-7078.
[14] ZENG Q, WANG J, LI X, et al. Cross-linked chains of metal-organic framework afford continuous ion transport in solid batteries[J]. ACS Energy Letters, 2021, 6(7): 2434-2441.
doi: 10.1021/acsenergylett.1c00583
[15] GAO L, LI J, JU J, et al. Designing of root-soil-like polyethylene oxide-based composite electrolyte for dendrite-free and long-cycling all-solid-state lithium metal batteries[J]. Chemical Engineering Journal, 2020.DOI:10.1016/j.cej.2020.124478.
[16] GUO Y, WU S, HE Y B, et al. Solid-state lithium batteries: safety and prospects[J]. eScience, 2022, 2(2): 138-163.
doi: 10.1016/j.esci.2022.02.008
[17] 巩桂芬, 徐阿文, 邹明贵, 等. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
doi: 10.11868/j.issn.1001-4381.2018.001320
GONG Guifen, XU Awen, ZOU Minggui, et al. Preparation and electrochemical properties of EVOH-SO3Li/poly(vinylidene fluoride-hexafluoropropylene)/hydroxyapatite lithium-ion battery separator[J]. Journal of Materials Engineering, 2020, 48(5): 75-82.
doi: 10.11868/j.issn.1001-4381.2018.001320
[18] ZHU P, YAN C, DIRICAN M, et al. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2018, 6(10): 4279-4285.
doi: 10.1039/C7TA10517G
[19] LEE J C, HAYES B K, LOVIBOND P F. Peak shift and rules in human generalization[J]. Journal of Experimental Psychology-Learning Memory and Cognition, 2018, 44(12): 1955-1970.
doi: 10.1037/xlm0000558
[20] WAN Z, LEI D, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201805301.
[21] WATANABE T, INAFUNE Y, TANAKA M, et al. Development of all-solid-state battery based on lithium ion conductive polymer nanofiber framework[J]. Journal of Power Sources, 2019, 423: 255-262.
doi: 10.1016/j.jpowsour.2019.03.066
[1] 赵美奇, 陈莉, 钱现, 李晓娜, 杜迅. 用于铜离子检测的静电纺纤维膜制备及其性能[J]. 纺织学报, 2024, 45(03): 11-18.
[2] 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20.
[3] 周歆如, 范梦晶, 岳欣琰, 洪剑寒, 韩潇. 导电微纳纤维复合纱的制备及其气敏特性[J]. 纺织学报, 2024, 45(02): 52-58.
[4] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[5] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[6] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[7] 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25.
[8] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[9] 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224.
[10] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
[11] 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
[12] 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23.
[13] 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204.
[14] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[15] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!