纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 122-128.doi: 10.13475/j.fzxb.20221104501

• 染整工程 • 上一篇    下一篇

丝网印刷还原氧化石墨烯改性蚕丝织物的导电与电热性能

陈锟1, 许晶莹1, 郑怡倩1, 李加林2(), 洪兴华1   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江理工大学丝绸与时尚文化研究中心, 浙江 杭州 310018
  • 收稿日期:2022-11-16 修回日期:2023-03-20 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 李加林
  • 作者简介:陈锟(1996—),女,博士生。主要研究方向为纺织品设计。
  • 基金资助:
    国家自然科学基金青年科学基金项目(51803185);中国博士后科学基金第15批站中特别资助项目(2022T150581);浙江省基础公益研究计划项目(LGF21E030005);浙江理工大学基本科研业务费专项资金项目(22202301-Y)

Conductivity and electrical heating properties of reduced graphene oxide modified silk fabric by screen printing

CHEN Kun1, XU Jingying1, ZHENG Yiqian1, LI Jialin2(), HONG Xinghua1   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Silk and Fashion Culture Center of Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2022-11-16 Revised:2023-03-20 Published:2024-03-15 Online:2024-04-15
  • Contact: LI Jialin

摘要:

为探究组织结构与丝网印刷次数对蚕丝织物导电性、耐水洗性以及电热性能的影响,设计缎纹组织、斜纹组织、重纬组织3种结构,通过丝网印刷工艺制备氧化石墨烯(GO)改性蚕丝织物,经过原位还原制得还原氧化石墨烯(RGO)改性导电蚕丝织物。借助扫描电子显微镜和X射线衍射仪对RGO改性蚕丝织物进行表观形态观察与晶体结构表征,分析了RGO改性蚕丝织物的导电性、耐水洗性和电热性能。结果表明:随着丝网印刷次数的增加,织物的电阻率逐渐减小;相同丝网印刷次数下电阻率最小的为RGO改性重纬蚕丝织物,经9次水洗后,丝网印刷5次所得RGO改性缎纹、斜纹、重纬蚕丝织物的电阻率分别增大了0.710、0.472、0.308 kΩ·cm;相比RGO改性斜纹和重纬蚕丝织物,RGO改性缎纹蚕丝织物具有较好的电热性能,在0.025 A的恒定电流下以10 ℃/s的升温速率达到96 ℃的饱和温度。通过丝网印刷工艺制备的RGO改性蚕丝织物在智能可穿戴纺织品领域具有良好应用潜力。

关键词: 蚕丝织物, 丝网印刷, 组织结构, 还原氧化石墨烯, 导电性能, 电热性能

Abstract:

Objective As a natural material with good mechanical properties and piezoelectricity, silk is widely used in the field of intelligent textiles. However, the development of intelligent wearable textiles is limited due to its inability for normal machine washing. Therefore, it is necessary to study the washing resistance of silk-based intelligent textiles. In order to study the washing resistance and electric heating properties of silk-based wearable fabrics, this work explores the influences of screen-printing times and fabric structure on fabric conductivity, washing resistance and electric heating performance.

Method In this study, graphene oxide (GO) was repeatedly finished on the surface of silk fabrics with satin, twill and backed weaves by screen printing, and then reduced graphene oxide (RGO) modified silk fabrics were prepared by reducing agent. The apparent morphology and crystal structure of the prepared RGO modified silk fabric were analyzed by scanning electron microscope and X-ray diffractometer. The surface resistance of the sample was tested by VC890D digital multimeter, and the samples were washed according to the standard of GB/T 8629—2017. The electrical heating properties of samples were tested by infrared thermal imager.

Results The spacing between the yarns in the satin silk fabric is obvious, and the RGO sheet structure on the surface is easily interrupted. Although many RGO layers adhered on the surface of RGO modified twill silk fabric, it is prone to large voids in the warp direction. RGO modified backed weave silk fabric has a large area of RGO layer in both warp and weft directions. The untreated silk fabric and the prepared RGO modified silk fabric have basically the same characteristic peak positions in the X-ray diffraction pattern. The preparation method used in this paper has no obvious effect on the original crystal phase structure of silk. With the increase of screen-printing times, the resistance of the fabric surface gradually decreases. When the number of screen-printing times is the same, the backed weave fabric has the minimum fabric surface resistance, and which is 0.539 kΩ·cm when the fabric is screen-printed for 6 times. The minimum change in the surface resistance of the fabric after washing is achieved by screen printing for 5 times. After 9 cycles of washing, the fabric resistance of each of the three fabrics is 1.427 kΩ·cm (satin weave), 1.061 kΩ·cm (twill weave), 0.797 kΩ·cm (backed weave), respectively. Accordingly, the RGO modified satin silk fabric has good electrical heating properties, reaching a stable temperature of 96 ℃ at a current of 0.025 A, and the maximum heating rate is 10 ℃/s. When the input current value is the same, the saturation temperature of RGO modified twill silk fabric is greater than that of RGO modified backed weave silk fabric. When the input current is 0.03 A, the saturation temperatures of the RGO modified twill weave silk fabrics is 69 ℃, and RGO modified backed weave is 39.8 ℃, and the heating rates are 9.7 ℃/s (twill weave) and 4.5 ℃/s (backed weave).

Conclusion Under the same preparation conditions, the resistance of RGO modified backed weave fabric is the smallest. In addition, the resistance of RGO modified silk fabric with 6 screen-printing times is higher than that of RGO modified silk fabric with 5 screen printing times after washing. Among the RGO modified silk fabrics with three different structures, the satin weave showed better electrical heating properties. This paper shows that RGO modified silk fabric prepared by screen printing has good washing resistance and electrical heating properties, and has good application potential in the field of intelligent wearable textiles.

Key words: silk fabric, screen printing, fabric structure, reduced graphene oxide, conductivity, electrical heating property

中图分类号: 

  • TS146

图1

RGO改性蚕丝织物制备流程示意图"

图2

水洗前后RGO改性缎纹、斜纹和重纬蚕丝织物的SEM照片"

图3

未处理蚕丝织物和RGO改性蚕丝织物的XRD谱图"

图4

RGO改性蚕丝织物的电阻率变化"

图5

不同丝网印刷次数下RGO改性缎纹、斜纹和重纬蚕丝织物的电阻率随水洗次数的变化"

图6

RGO改性蚕丝织物经不同次数水洗后的电阻率"

图7

IT6322电流源加热RGO改性蚕丝织物的热成像示意图"

图8

RGO改性缎纹、斜纹和重纬蚕丝织物不同电流下的温度曲线"

图9

RGO改性缎纹、斜纹和重纬蚕丝织物不同电流下的加热/冷却速率曲线"

[1] RODES-CARBONELL A M, FERRI J, GARCIA-BREIJO E, et al. Influence of structure and composition of woven fabrics on the conductivity of flexography printed electronics[J]. Polymers, 2021.DOI:103390/polym13183165.
[2] LEE J, LLERENA ZAMBRANO B, WOO J, et al. Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201902532.
[3] WANG H, LI S, WANG Y, et al. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201908214.
[4] ZHANG M, ZHAO M, JIAN M, et al. Printable smart pattern for multifunctional energy-management e-textile[J]. Matter, 2019, 1(1): 168-79.
doi: 10.1016/j.matt.2019.02.003
[5] FU Y, CAI X, WU H, et al. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage[J]. Adv Mater, 2012, 24(42): 5713-5718.
doi: 10.1002/adma.v24.42
[6] YANG C, JIANG Q, LI W, et al. Ultrafine Pt nanoparticle-decorated 3D hybrid architectures built from reduced graphene oxide and MXene nanosheet for methanol oxidation[J]. Chemistry of Materials, 2019, 31(22): 9277-9287.
doi: 10.1021/acs.chemmater.9b02115
[7] 张勇, 陆浩杰, 梁晓平, 等. 蚕丝基智能纤维及织物:潜力、现状与未来展望[J]. 物理化学学报, 2022, 38(9):64-79.
ZHANG Yong, LU Haojie, LIANG Xiaoping, et al. Silk materials for intelligent fibers and textiles: potential, progress and future perspective[J]. Acta Physico-Chimica Sinica, 2022, 38(9):64-79.
[8] YU R F, ZHU C Y, WAN J M, et al. Review of graphene-based textile strain sensors, with emphasis on structure activity relationship[J]. Polymers, 2021. DOI: 10.3390/polym13010151.
[9] HONG X H, YU R F, HOU M, et al. Smart fabric strain sensor comprising reduced graphene oxide with structure-based negative piezoresistivity[J]. Journal of Materials Science, 2021, 56: 16946-16962.
doi: 10.1007/s10853-021-06365-4
[10] ZHANG S, LIU H, YANG S, et al. Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer[J]. ACS Appl Mater Interfaces, 2019, 11(11): 10922-10932.
doi: 10.1021/acsami.9b00900
[11] LIU H, LI Q, ZHANG S, et al. Electrically conductive polymer composites for smart flexible strain sensors: a critical review[J]. Journal of Materials Chemistry C, 2018, 6(45): 12121-12141.
doi: 10.1039/C8TC04079F
[12] XIE X, ZHAO M Q, ANASORI B, et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy, 2016, 26: 513-523.
doi: 10.1016/j.nanoen.2016.06.005
[13] HUANG L Z, YUAN Q, JI X X, et al. Multifunctional MXene-decorated cotton fabric with different weaves, outstanding photothermal effect, and rapid response[J]. Cellulose, 2022, 29(12): 6997-7010.
doi: 10.1007/s10570-022-04704-5
[14] 李冰, 盖国平, 郭蔚, 等. 鲜茧与干茧生丝的结构与性能比较及其鉴别方法[J]. 纺织学报, 2019, 40(3):32-38.
LI Bing, GAI Guoping, GUO Wei, et al. Comparison between structure and performance of fresh cocoon raw silk and dry cocoon raw silk and identification method thereof[J]. Journal of Textile Research, 2019, 40(3):32-38.
[15] JI Y, CHEN G, XING T. Rational design and preparation of flame retardant silk fabrics coated with reduced graphene oxide[J]. Applied Surface Science, 2019, 474: 203-210.
doi: 10.1016/j.apsusc.2018.03.120
[16] 虞茹芳, 洪兴华, 祝成炎, 等. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10):126-131.
YU Rufang, HONG Xinghua, ZHU Chengyan, et al. Electrical heating properties of fabric coated by reduced graphene oxide[J]. Journal of Textile Research, 2021, 42(10):126-131.
[1] 居傲, 向卫宏, 崔艳超, 孙颖, 陈利. 基于定制纤维铺放工艺的电加热织物制备及其半球成型性能[J]. 纺织学报, 2024, 45(02): 67-76.
[2] 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82.
[3] 贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光, 李时伟. 基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能[J]. 纺织学报, 2023, 44(10): 113-119.
[4] 黄锦波, 邵灵达, 祝成炎. 炭化三维间隔棉织物的制备及其电加热性能[J]. 纺织学报, 2023, 44(04): 139-145.
[5] 胡伊丽, 周赳. 三纬组合全显结构起始点位置设置对织物显色的影响[J]. 纺织学报, 2023, 44(04): 78-85.
[6] 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163.
[7] 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112.
[8] 张星月, 韩朋帅, 王一萌, 张耘箫, 周岚, 刘国金. 非对称润湿特性纺织基材上高稳固光子晶体的构筑[J]. 纺织学报, 2022, 43(08): 88-94.
[9] 薛宝霞, 史依然, 张凤, 秦瑞红, 牛梅. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(05): 130-135.
[10] 姚明远, 刘宁娟, 王嘉宁, 许福军, 刘玮. 功能化碳纳米管复合薄膜及其膜卷纱的电热性能[J]. 纺织学报, 2022, 43(05): 86-91.
[11] 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123.
[12] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[13] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[14] 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131.
[15] 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!