纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 137-147.doi: 10.13475/j.fzxb.20220907601

• 染整工程 • 上一篇    下一篇

N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能

陈荣轩1,2, 孙辉1,2(), 于斌1,2   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江省现代纺织技术创新中心, 浙江 绍兴 312000
  • 收稿日期:2022-12-29 修回日期:2023-12-14 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 孙辉
  • 作者简介:陈荣轩(1997—),男,硕士生。主要研究方向为纺织材料的光催化功能改性。
  • 基金资助:
    浙江省自然科学基金项目(LY19E030011);浙江省“高层次特殊人才支持计划”科技创新领军人才项目(2021R52031)

Preparation and photocatalytic properties of N-TiO2/ polypropylene melt-blown nonwovens

CHEN Rongxuan1,2, SUN Hui1,2(), YU Bin1,2   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, China
  • Received:2022-12-29 Revised:2023-12-14 Published:2024-03-15 Online:2024-04-15
  • Contact: SUN Hui

摘要:

为制备具有光催化功能的聚丙烯(PP)熔喷非织造材料,首先通过溶胶-凝胶法制备氮掺杂二氧化钛(N-TiO2)光催化剂,然后采用超声浸渍的方法将N-TiO2均匀负载在PP熔喷非织造材料表面得到N-TiO2/PP复合熔喷材料,并对其结构和性能进行表征和分析,通过自由基捕获实验确定光催化机制。结果表明:N掺杂量为1%的N-TiO2的颗粒大小均匀,粒径约为10 nm,在30 min暗吸附和90 min光照条件下,其光催化降解亚甲基蓝(MB)的效率最佳,达到98%;将该N-TiO2负载在PP熔喷非织造材料表面后,可包裹在PP纤维表面,当负载量超过30 mg后出现团聚现象;负载量为30 mg的N-TiO2/PP复合熔喷材料的光催化降解性能最优,在30 min暗吸附和90 min光照条件下,对亚甲基蓝(MB)的降解效率达到98%;在光激发下N-TiO2会产生超氧自由基和羟基自由基,二者共同降解MB。

关键词: 氮掺杂二氧化钛, 聚丙烯熔喷非织造材料, 光催化, 亚甲基蓝, 自由基, 印染废水, 废水处理

Abstract:

Objective Titanium dioxide (TiO2) has non-toxicity, low cost, and high photocatalytic activity. However, the photocatalytic ability of TiO2 itself cannot reach the application level, and the powdered TiO2 is difficult to recycle and reuse.Thus, it is difficult for TiO2 to be practically applied in industrial fields. Polypropylene (PP) melt-blown nonwoven material with good chemical stability, low price, and simple manufacturing process has been widely used in air filtration, medical protection, and other fields. However, its single function limits its application. This research aims to improve photocatalytic ability and to tackle the recycling of TiO2 by doping N with TiO2 and then loading N-TiO2 nanoparticles on the surface of PP melt-blown nonwovens.

Method N-TiO2 photocatalyst was first prepared by sol-gel method, and the optimal doping amount of N was determined by studying the surface morphology, microstructure, chemical structure, and photocatalytic performance of N-TiO2. The N-TiO2 photocatalyst with the best performance was loaded on the surface of PP melt-blown nonwovens by ultrasonic impregnation method. The surface morphology, chemical composition and structure, and photocatalytic properties of N-TiO2/PP composite melt-blown nonwovens with different N-TiO2 loading concentrations were studied. The photocatalytic mechanism of N-TiO2/PP composite melt-blown materials for organic dyestuff was verified and analyzed by free radical capture experiments.

Results The particle size of N-TiO2 reached about 10 nm. N-TiO2 with N doping amount of 1% was found to have the best photocatalytic performance for MB. After loading the optimal N-TiO2 on the surface of PP melt-blown nonwovens, N-TiO2 were found uniformly wrapped on the surface of PP fibers. The agglomeration of N-TiO2 on the surface of PP fibers occurs when the loading amount of N-TiO2 exceeds 30 mg. Compared with PP melt-blown materials, the water contact angle of N-TiO2/PP composite melt-blown materials was significantly reduced, and the thermal stability was also improved. When the N-TiO2 loading amount is 30 mg, the photocatalytic degradation rate of N-TiO2/PP composite melt-blown material for MB reached 98% under the conditions of 30 min dark adsorption and 90 min photocatalysis. After trapping superoxide radicals (· O 2 -) and hydroxyl radicals (·OH), the photocatalytic MB degradation efficiency of N-TiO2 with 1% N doping were decreased by 22% and 23%, respectively. After being first used for the MB photocatalytic degradation, the crystalline structure and morphology of N-TiO2/PP composite melt-blown nonwovens remained the same. After the fourth MB photocatalytic degradation, the photocatalytic degradation efficiency of the composite melt-blown material for MB was about 58%.

Conclusion Low N doping amount can effectively improve the photocatalytic performance of TiO2. N-TiO2/PP composite melt-blown material has proved to effectively degrade methylene blue dye. The composite melt-blown material has good stability and is recyclable. The research provides reference for expanding the application of PP melt-blown materials in the water treatment industry.

Key words: nitrogen doped titanium dioxide, polypropylene melt-blown nonwoven, photocatalytic, methylene blue, radical, dyeing and printing wastewater, wastewater treatment

中图分类号: 

  • TS176

表1

样品配比"

样品
编号
样品名称 尿素质量
分数/%
TiO2质量
分数/%
N-TiO2负载
量/mg
1# TiO2 0 100
2# 1 99
3# N-TiO2 5 95
4# 10 90
5# 20 80
6# PP熔喷材料 0 0
7# 1 99 10
8# N-TiO2/PP 1 99 20
9# 复合熔喷 1 99 30
10# 材料 1 99 40
11# 1 99 50

图1

TiO2和不同N掺杂量的N-TiO2材料的扫描电镜照片"

图2

N掺杂量为20%的N-TiO2材料的透射电子显微镜照片"

图3

TiO2和不同N掺杂量的N-TiO2材料的红外光谱图"

图4

TiO2和不同N掺杂量N-TiO2材料对MB的降解曲线及其一级反应速率曲线"

图5

PP和不同负载量的N-TiO2/PP复合熔喷材料的扫描电镜照片"

表2

PP和N-TiO2/PP材料的元素含量"

样品
编号
元素 质量
百分比/%
原子
百分比/%
6# C 100.00 100.00
9# C 32.72 53.94
N 18.24 25.79
Ti 49.04 20.27

图6

PP和负载量为30 mg的N-TiO2/PP复合熔喷材料的元素分布"

图7

PP、TiO2、N-TiO2和不同负载量的N-TiO2/PP复合熔喷材料的X射线衍射谱图"

图8

PP、N-TiO2与不同负载量的N-TiO2/PP复合熔喷材料的红外光谱图"

图9

PP、N-TiO2与不同负载量的N-TiO2/PP复合熔喷材料的紫外-可见光漫反射谱图"

图10

PP和不同负载量的N-TiO2/PP复合熔喷材料的TG和DTG曲线"

图11

PP和不同负载量的N-TiO2/PP复合熔喷材料的水接触角"

图12

不同负载量的N-TiO2/PP复合熔喷材料对MB的降解曲线图以及一级反应速率图"

图13

N-TiO2光催化材料不同自由基捕获后的光催化降解MB效率和N-TiO2/PP复合熔喷材料的光催化机制"

图14

第1次光催化降解MB后N-TiO2/PP复合熔喷非织造材料的X射线衍射曲线和扫描电镜照片以及重复光催化降解MB效率"

[1] NIDHEESH P V, ZHOU M, OTURAN M A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes[J]. Chemosphere, 2018, 197: 210-227.
doi: S0045-6535(17)32173-2 pmid: 29366952
[2] 李庆, 吴志强, 李丹, 等. 金属-有机骨架处理印染废水的研究进展[J]. 纺织高校基础科学学报, 2021, 34(3):36-44.
LI Qing, WU Zhiqiang, LI Dan, et al. Advances in the treatment of printing and dyeing wastewater by metal-organic frameworks[J]. Journal of Basic Science of Textile Universities, 2021, 34(3):36-44.
[3] 李庆, 张莹, 樊增禄, 等. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018, 39(2):112-118.
LI Qing, ZHANG Ying, FAN Zenglu, et al. Adsorption and visible-light photodegradation of Cu-organic framework to dye wastewater[J]. Journal of Textile Research, 2018, 39(2):112-118.
[4] COTILLAS S, LLANOS J, CAÑIZARES P, et al. Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation[J]. Electrochimica Acta, 2018, 263: 1-7.
doi: 10.1016/j.electacta.2018.01.052
[5] SENGUTTUVAN S, SENTHILKUMAR P, JANAKI V, et al. Significance of conducting polyaniline based composites for the removal of dyes and heavy metals from aqueous solution and wastewaters:a review[J]. Chemosphere, 2021. DOI: 10.1016/j.chemosphere.2020.129201.
[6] ESLAMI H, SHARIATIFAR A, RAFIEE E, et al. Decolorization and biodegradation of Reactive Red 198 azo dye by a new Enterococcus faecalis-Klebsiella variicola bacterial consortium isolated from textile wastewater sludge[J]. World Journal of Microbiology and Biotechnology, 2019, 35(3): 1-10.
doi: 10.1007/s11274-018-2566-9
[7] BANKOLE P O, ADEKUNLE A A, GOVINDWAR S P. Enhanced decolorization and biodegradation of Acid Red 88 dye by newly isolated fungus, Achaetomium strumarium[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 1589-1600.
doi: 10.1016/j.jece.2018.01.069
[8] DJELLABI R, YANG B, WANG Y, et al. Carbonaceous biomass-titania composites with TiOC bonding bridge for efficient photocatalytic reduction of Cr (VI) under narrow visible light[J]. Chemical Engineering Journal, 2019, 366: 172-180.
doi: 10.1016/j.cej.2019.02.035
[9] MRAGUI A E, ZEGAOUI O, SILVA J. Elucidation of the photocatalytic degradation mechanism of an azo dye under visible light in the presence of cobalt doped TiO2 nanomaterials[J]. Chemosphere, 2021. DOI: 10.1016/j.chemosphere.2020.128931.
[10] LIU K, CHEN J, SUN F, et al. Historical development and prospect of intimately coupling photocatalysis and biological technology for pollutant treatment in sewage: a review[J]. Science of The Total Environment, 2022.DOI: 10.1016/j.scitotenv.2022.155482.
[11] SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986.
doi: 10.1021/cr5001892
[12] ATHANASEKOU C, ROMANOS G E, PAPAGEORGIOU S K, et al. Photocatalytic degradation of hexavalent chromium emerging contaminant via advanced titanium dioxide nanostructures[J]. Chemical Engineering Journal, 2017, 318: 171-180.
doi: 10.1016/j.cej.2016.06.033
[13] ARFANIS M K, ADAMOU P, MOUSTAKAS N G, et al. Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nano-tubes[J]. Chemical Engineering Journal, 2017, 310: 525-536.
doi: 10.1016/j.cej.2016.06.098
[14] ATHANASEKOU C P, LIKODIMOS V, FALARAS P. Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water[J]. Journal of Environmental Chemical Engineering, 2018, 6(6): 7386-7394.
doi: 10.1016/j.jece.2018.07.026
[15] AL-MAMUN M R, KADER S, ISLAM M S, et al. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review[J]. Journal of Environmental Chemical Engineering, 2019. DOI: 10.1016/j.jece.2019.103248.
[16] LEE Y, WADSWORTH L C. Structure and filtration properties of melt blown polypropylene webs[J]. Polymer Engineering & Science, 1990, 30(22): 1413-1419.
[17] HEGDE R R, BHAT G S. Nanoparticle effects on structure and properties of polypropylene meltblown webs[J]. Journal of Applied Polymer Science, 2010, 115(2): 1062-1072.
doi: 10.1002/app.v115:2
[18] SUN F, LI T T, ZHANG X, et al. In situ growth polydopamine decorated polypropylene melt-blown membrane for highly efficient oil/water separation[J]. Chemosphere, 2020. DOI: 10.1016/j.chemosphere.2020.126873.
[19] SUN F, LI T T, REN H, et al. PP/TiO2 melt-blown membranes for oil/water separation and photocatalysis: manufacturing techniques and property evaluations[J]. Polymers, 2019.DOI: 10.3390/POLYM11050775.
[20] ZHU X, DAI Z, XU K, et al. Fabrication of multifunctional filters via online incorporating nano-TiO2 into spun-bonded/melt-blown nonwovens for air filtration and toluene degradation[J]. Macromolecular Materials and Engineering, 2019. DOI: 10.1002/mame.201900350.
[21] PARVATHIRAJA C, KATHERIA S, SIDDIQUI M R, et al. Activated carbon-loaded titanium dioxide nanoparticles and their photocatalytic and antibacterial investigations[J]. Catalysts, 2022.DOI: 10.3390/catal12080834.
[22] ZHANG H, LV X, LI Y, et al. P25-graphene composite as a high performance photocatalyst[J]. ACS Nano, 2010, 4(1): 380-386.
doi: 10.1021/nn901221k pmid: 20041631
[23] WANG X, HU S, GUO Y, et al. Toughened high-flow polypropylene with polyolefin-based elastomers[J]. Polymers, 2019. DOI:10.3390/POLYM11121976.
[24] TAMARANI A, ZAINUL R, DEWATA I. Preparation and characterization of XRD nano Cu-TiO2 using sol-gel method[C]// Journal of Physics:Conference Series. Ireland: IOP Publishing, 2019. DOI: 10.1088/1742-6596/1185/1/012020.
[25] BOURIKAS K, KORDULIS C, LYCOURGHIOTIS A. Titanium dioxide (anatase and rutile): surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts[J]. Chemical Reviews, 2014, 114(19): 9754-9823.
doi: 10.1021/cr300230q pmid: 25253646
[26] MORENT R, GEYTER N De, LEYS C, et al. Comparison between XPS- and FTIR-analysis of plasma-treated polypropylene film surfaces[J]. Surface and Interface Analysis, 2008, 40(3/4): 597-600.
doi: 10.1002/sia.v40:3/4
[27] DOONG R, CHANG W. Photoassisted titanium dioxide mediated degradation of organophosphorus pesticides by hydrogen peroxide[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 107(1-3): 239-244.
doi: 10.1016/S1010-6030(96)04579-0
[1] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[2] 黄彪, 郑莉娜, 秦妍, 程羽君, 李成才, 朱海霖, 刘国金. 多孔型TiO2微粒的制备及其对离子型染料的吸附[J]. 纺织学报, 2023, 44(11): 167-175.
[3] 李璟孜, 娄蒙蒙, 黄世燕, 李方. 基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理[J]. 纺织学报, 2023, 44(09): 116-123.
[4] 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133.
[5] 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157.
[6] 王宸杨, 贾洁, 李发学. β-环糊精基金属有机框架材料的制备及其对重金属离子的吸附[J]. 纺织学报, 2023, 44(08): 158-166.
[7] 王国琴, 付小航, 朱羽科, 吴礼光, 王挺, 蒋孝佳, 陈华丽. 可见光响应的介孔TiO2光降解罗丹明B机制及其降解途径[J]. 纺织学报, 2023, 44(05): 155-163.
[8] 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176.
[9] 李方, 潘航, 章耀鹏, 马慧婕, 沈忱思. 印染废水中聚乙烯醇浆料的高效去除及六价铬的协同还原[J]. 纺织学报, 2023, 44(03): 147-157.
[10] 陈明星, 张威, 王新亚, 肖长发. 纳米纤维基催化材料的制备及其在环境领域中的应用研究进展[J]. 纺织学报, 2023, 44(01): 209-218.
[11] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[12] 胡倩, 杨涛语, 朱斐超, 吕汪洋, 吴明华, 余德游. 混合价态铁基金属有机框架催化过氧乙酸高效降解对硝基苯酚[J]. 纺织学报, 2022, 43(11): 133-140.
[13] 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111.
[14] 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118.
[15] 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!