纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 137-147.doi: 10.13475/j.fzxb.20220907601
CHEN Rongxuan1,2, SUN Hui1,2(), YU Bin1,2
摘要:
为制备具有光催化功能的聚丙烯(PP)熔喷非织造材料,首先通过溶胶-凝胶法制备氮掺杂二氧化钛(N-TiO2)光催化剂,然后采用超声浸渍的方法将N-TiO2均匀负载在PP熔喷非织造材料表面得到N-TiO2/PP复合熔喷材料,并对其结构和性能进行表征和分析,通过自由基捕获实验确定光催化机制。结果表明:N掺杂量为1%的N-TiO2的颗粒大小均匀,粒径约为10 nm,在30 min暗吸附和90 min光照条件下,其光催化降解亚甲基蓝(MB)的效率最佳,达到98%;将该N-TiO2负载在PP熔喷非织造材料表面后,可包裹在PP纤维表面,当负载量超过30 mg后出现团聚现象;负载量为30 mg的N-TiO2/PP复合熔喷材料的光催化降解性能最优,在30 min暗吸附和90 min光照条件下,对亚甲基蓝(MB)的降解效率达到98%;在光激发下N-TiO2会产生超氧自由基和羟基自由基,二者共同降解MB。
中图分类号:
[1] |
NIDHEESH P V, ZHOU M, OTURAN M A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes[J]. Chemosphere, 2018, 197: 210-227.
doi: S0045-6535(17)32173-2 pmid: 29366952 |
[2] | 李庆, 吴志强, 李丹, 等. 金属-有机骨架处理印染废水的研究进展[J]. 纺织高校基础科学学报, 2021, 34(3):36-44. |
LI Qing, WU Zhiqiang, LI Dan, et al. Advances in the treatment of printing and dyeing wastewater by metal-organic frameworks[J]. Journal of Basic Science of Textile Universities, 2021, 34(3):36-44. | |
[3] | 李庆, 张莹, 樊增禄, 等. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018, 39(2):112-118. |
LI Qing, ZHANG Ying, FAN Zenglu, et al. Adsorption and visible-light photodegradation of Cu-organic framework to dye wastewater[J]. Journal of Textile Research, 2018, 39(2):112-118. | |
[4] |
COTILLAS S, LLANOS J, CAÑIZARES P, et al. Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation[J]. Electrochimica Acta, 2018, 263: 1-7.
doi: 10.1016/j.electacta.2018.01.052 |
[5] | SENGUTTUVAN S, SENTHILKUMAR P, JANAKI V, et al. Significance of conducting polyaniline based composites for the removal of dyes and heavy metals from aqueous solution and wastewaters:a review[J]. Chemosphere, 2021. DOI: 10.1016/j.chemosphere.2020.129201. |
[6] |
ESLAMI H, SHARIATIFAR A, RAFIEE E, et al. Decolorization and biodegradation of Reactive Red 198 azo dye by a new Enterococcus faecalis-Klebsiella variicola bacterial consortium isolated from textile wastewater sludge[J]. World Journal of Microbiology and Biotechnology, 2019, 35(3): 1-10.
doi: 10.1007/s11274-018-2566-9 |
[7] |
BANKOLE P O, ADEKUNLE A A, GOVINDWAR S P. Enhanced decolorization and biodegradation of Acid Red 88 dye by newly isolated fungus, Achaetomium strumarium[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 1589-1600.
doi: 10.1016/j.jece.2018.01.069 |
[8] |
DJELLABI R, YANG B, WANG Y, et al. Carbonaceous biomass-titania composites with TiOC bonding bridge for efficient photocatalytic reduction of Cr (VI) under narrow visible light[J]. Chemical Engineering Journal, 2019, 366: 172-180.
doi: 10.1016/j.cej.2019.02.035 |
[9] | MRAGUI A E, ZEGAOUI O, SILVA J. Elucidation of the photocatalytic degradation mechanism of an azo dye under visible light in the presence of cobalt doped TiO2 nanomaterials[J]. Chemosphere, 2021. DOI: 10.1016/j.chemosphere.2020.128931. |
[10] | LIU K, CHEN J, SUN F, et al. Historical development and prospect of intimately coupling photocatalysis and biological technology for pollutant treatment in sewage: a review[J]. Science of The Total Environment, 2022.DOI: 10.1016/j.scitotenv.2022.155482. |
[11] |
SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986.
doi: 10.1021/cr5001892 |
[12] |
ATHANASEKOU C, ROMANOS G E, PAPAGEORGIOU S K, et al. Photocatalytic degradation of hexavalent chromium emerging contaminant via advanced titanium dioxide nanostructures[J]. Chemical Engineering Journal, 2017, 318: 171-180.
doi: 10.1016/j.cej.2016.06.033 |
[13] |
ARFANIS M K, ADAMOU P, MOUSTAKAS N G, et al. Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nano-tubes[J]. Chemical Engineering Journal, 2017, 310: 525-536.
doi: 10.1016/j.cej.2016.06.098 |
[14] |
ATHANASEKOU C P, LIKODIMOS V, FALARAS P. Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water[J]. Journal of Environmental Chemical Engineering, 2018, 6(6): 7386-7394.
doi: 10.1016/j.jece.2018.07.026 |
[15] | AL-MAMUN M R, KADER S, ISLAM M S, et al. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review[J]. Journal of Environmental Chemical Engineering, 2019. DOI: 10.1016/j.jece.2019.103248. |
[16] | LEE Y, WADSWORTH L C. Structure and filtration properties of melt blown polypropylene webs[J]. Polymer Engineering & Science, 1990, 30(22): 1413-1419. |
[17] |
HEGDE R R, BHAT G S. Nanoparticle effects on structure and properties of polypropylene meltblown webs[J]. Journal of Applied Polymer Science, 2010, 115(2): 1062-1072.
doi: 10.1002/app.v115:2 |
[18] | SUN F, LI T T, ZHANG X, et al. In situ growth polydopamine decorated polypropylene melt-blown membrane for highly efficient oil/water separation[J]. Chemosphere, 2020. DOI: 10.1016/j.chemosphere.2020.126873. |
[19] | SUN F, LI T T, REN H, et al. PP/TiO2 melt-blown membranes for oil/water separation and photocatalysis: manufacturing techniques and property evaluations[J]. Polymers, 2019.DOI: 10.3390/POLYM11050775. |
[20] | ZHU X, DAI Z, XU K, et al. Fabrication of multifunctional filters via online incorporating nano-TiO2 into spun-bonded/melt-blown nonwovens for air filtration and toluene degradation[J]. Macromolecular Materials and Engineering, 2019. DOI: 10.1002/mame.201900350. |
[21] | PARVATHIRAJA C, KATHERIA S, SIDDIQUI M R, et al. Activated carbon-loaded titanium dioxide nanoparticles and their photocatalytic and antibacterial investigations[J]. Catalysts, 2022.DOI: 10.3390/catal12080834. |
[22] |
ZHANG H, LV X, LI Y, et al. P25-graphene composite as a high performance photocatalyst[J]. ACS Nano, 2010, 4(1): 380-386.
doi: 10.1021/nn901221k pmid: 20041631 |
[23] | WANG X, HU S, GUO Y, et al. Toughened high-flow polypropylene with polyolefin-based elastomers[J]. Polymers, 2019. DOI:10.3390/POLYM11121976. |
[24] | TAMARANI A, ZAINUL R, DEWATA I. Preparation and characterization of XRD nano Cu-TiO2 using sol-gel method[C]// Journal of Physics:Conference Series. Ireland: IOP Publishing, 2019. DOI: 10.1088/1742-6596/1185/1/012020. |
[25] |
BOURIKAS K, KORDULIS C, LYCOURGHIOTIS A. Titanium dioxide (anatase and rutile): surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts[J]. Chemical Reviews, 2014, 114(19): 9754-9823.
doi: 10.1021/cr300230q pmid: 25253646 |
[26] |
MORENT R, GEYTER N De, LEYS C, et al. Comparison between XPS- and FTIR-analysis of plasma-treated polypropylene film surfaces[J]. Surface and Interface Analysis, 2008, 40(3/4): 597-600.
doi: 10.1002/sia.v40:3/4 |
[27] |
DOONG R, CHANG W. Photoassisted titanium dioxide mediated degradation of organophosphorus pesticides by hydrogen peroxide[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 107(1-3): 239-244.
doi: 10.1016/S1010-6030(96)04579-0 |
[1] | 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16. |
[2] | 黄彪, 郑莉娜, 秦妍, 程羽君, 李成才, 朱海霖, 刘国金. 多孔型TiO2微粒的制备及其对离子型染料的吸附[J]. 纺织学报, 2023, 44(11): 167-175. |
[3] | 李璟孜, 娄蒙蒙, 黄世燕, 李方. 基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理[J]. 纺织学报, 2023, 44(09): 116-123. |
[4] | 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133. |
[5] | 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157. |
[6] | 王宸杨, 贾洁, 李发学. β-环糊精基金属有机框架材料的制备及其对重金属离子的吸附[J]. 纺织学报, 2023, 44(08): 158-166. |
[7] | 王国琴, 付小航, 朱羽科, 吴礼光, 王挺, 蒋孝佳, 陈华丽. 可见光响应的介孔TiO2光降解罗丹明B机制及其降解途径[J]. 纺织学报, 2023, 44(05): 155-163. |
[8] | 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176. |
[9] | 李方, 潘航, 章耀鹏, 马慧婕, 沈忱思. 印染废水中聚乙烯醇浆料的高效去除及六价铬的协同还原[J]. 纺织学报, 2023, 44(03): 147-157. |
[10] | 陈明星, 张威, 王新亚, 肖长发. 纳米纤维基催化材料的制备及其在环境领域中的应用研究进展[J]. 纺织学报, 2023, 44(01): 209-218. |
[11] | 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117. |
[12] | 胡倩, 杨涛语, 朱斐超, 吕汪洋, 吴明华, 余德游. 混合价态铁基金属有机框架催化过氧乙酸高效降解对硝基苯酚[J]. 纺织学报, 2022, 43(11): 133-140. |
[13] | 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111. |
[14] | 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118. |
[15] | 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105. |
|