纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 148-155.doi: 10.13475/j.fzxb.20221006601

• 服装工程 • 上一篇    下一篇

基于ANSYS的人体下肢服装压虚拟仿真预测

朱圆圆, 覃蕊, 金佳勤, 雷彧腾, 于淼()   

  1. 青岛大学 纺织服装学院, 山东 青岛 266071
  • 收稿日期:2022-12-20 修回日期:2023-10-22 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 于淼
  • 作者简介:朱圆圆(2000—),女,硕士生。主要研究方向为功能服装。
  • 基金资助:
    国家自然科学基金项目(52073151);山东省自然科学基金项目(ZR2019PEE022);中国纺织工业联合会科技指导性项目(2018078);教育部产学合作协同育人项目(202101102013)

Simulation prediction of lower limb clothing pressure using ANSYS

ZHU Yuanyuan, DAN Rui, JIN Jiaqin, LEI Yuteng, YU Miao()   

  1. College of Textile and Clothing, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2022-12-20 Revised:2023-10-22 Published:2024-03-15 Online:2024-04-15
  • Contact: YU Miao

摘要:

为研究人体下肢各层组织在服装压作用下产生的形变和应力分布情况,利用16层螺旋CT仪及Mimics软件获取人体下肢分层三维模型,用ANSYS构建有限元模型预测服装压对皮肤层、其它软组织层和肌肉层产生的位移形变;在人体下肢选择44个压力采集部位,对实测服装压与预测服装压进行相关性分析。结果表明:在服装压作用下,人体下肢各层的形变主要分布在大腿内侧,形变分布最少区域为小腿前侧;皮肤层形变最大值为2.73×10-2 mm,其它软组织层形变最大值为5.19×10-4 mm,肌肉层形变最大值为7.30×10-5 mm;皮肤能抵消的最大形变值约为 2.73×10-3 mm,低于这个值的形变量在皮肤层以外的地方无法测得;人体下肢各面所受到的应力分布与形变分布整体一致,由大到小依次为内侧、后侧、前侧、外侧;服装压预测数据和实测数据的多重相关系数拟合优度为1,二者之间具有极其明显的相关性,说明所建立的服装压预测分层模型可用来预测服装压对皮肤、其它软组织和肌肉的形变。

关键词: 服装压, 下肢分层模型, 服装压预测, 形变位移, 功能服装, ANSYS软件

Abstract:

Objective In order to study the mechanism of interaction between clothing pressure and various layers of lower body tissues, including skin layer, other soft tissue layer and muscle layer, a finite element layered model was established using ANSYS to predict the deformation and stress distribution of each layer tissue under clothing pressure.

Method Two-dimensional tomography images of human lower limbs was obtained by CT scanner, and a three-dimensional layered model of human lower limbs by Mimics was established and was imported into ANSYS to improve the model. Material properties of the model were defined, and boundary conditions were set to obtain finite element prediction models. In order to verify the accuracy of the model, 44 collection points were selected in the lower limbs to collect the measured clothing pressure data, and SPSS were utilized to analyze the correlation between the predicted data and the measured data,useing multiple correlation coefficient R to measure the model fit degree. The closer the R value was to 1, the higher the accuracy of the model was proved.

Results The least obvious part of the skin layer was found to be the medial front of the calf, the least obvious part of the other soft tissue layer was basically the same as the skin layer, and the least obvious part of the muscle layer was the medial front of the calf. The most obvious deformation part of the skin layer was basically the same as that of other soft tissue layers, which was on the upper part of the inner middle of the thigh. The maximum shape variations were 2.73×10-2 mm and 5.19×10-4 mm, respectively, with a difference of nearly two orders of magnitude. The muscle layer deformation mainly occurred in the inner thigh, front internal, back internal and back leg. The most obvious part of the deformation was in the middle of the inner thigh, with a maximum value of 7.30×10-5 mm. By comparing the skin layer with other soft tissue layers, it was found that in the area where the skin layer shape variation is less than 2.73´10-3 mm, the other soft tissue layers hardly deformed. Compared with the deformation prediction curve and stress prediction curve, although there are some differences between them, the inflection point was basically the same. When the stress reached the peak, the deformation also reached the maximum value, and when the stress dropped to the trough, the deformation is also at the minimum value, indicating that the deformation was affected by the change of stress and was positively correlated with the stress. On the whole, the thigh deformation was more obvious than the calf deformation, the middle thigh deformation difference was the largest, the ankle deformation difference was the smallest.

Conclusion By comparing the prediction results of clothing pressure of skin layer, other soft tissue layer and muscle layer, it is found that the pressure of clothing pressure on each layer of human lower limbs gradually decreases from the outside to the inside, and the influence of clothing pressure on muscle layer is little, and the main object of clothing pressure is skin layer and other soft tissue layer. In a certain range, the body surface shape variations are affected by stress changes and maintain a positive correlation with stress. The surface stresses of human lower limbs are inner, rear, front and outer in order from large to small. The goodness of fit of multiple correlation coefficients between the predicted clothing pressure data and the measured data R is 1, indicating that the layered clothing pressure prediction model can be used to study the deformation prediction of skin, other soft tissues and muscles under clothing pressure. In practical application, this finite element prediction model can be used to obtain the appropriate garment pressure comfort threshold, reduce muscle fatigue, improve exercise efficiency, and provide theoretical guidance for the product development of functional tight sports pants.

Key words: clothing pressure, lower limb stratification model, clothing pressure prediction, deformation displacement, functional clothing, ANSYS software

中图分类号: 

  • TS540.99

图1

44个服装压采集部位"

图2

股骨与盆骨连接区域的页面视图"

图3

股骨初始三维图像区域图"

图4

骨骼初始面网格"

图5

人体下肢6号采集点服装压模拟区"

表1

材料属性赋值参数"

材料 弹性模量/MPa 密度/(kg·m-3) 泊松比
肌肉 125 1 700 0.49
其它软组织 500 920 0.49
皮肤 0.15 1 085 0.49

图6

皮肤在服装压作用下形变预测结果"

图7

其它软组织在服装压作用下形变预测结果"

图8

肌肉在服装压作用下形变预测结果"

图9

左腿体表应力预测分布"

图10

左腿44个采集部位的体表形变预测值"

图11

左腿44个采集部位的体表应力预测值"

图12

44个采集部位的实测服装压和预测服装压散点图"

[1] 顾罗铃. 基于压力功效的定制型医疗压力袜开发与测试[D]. 上海: 东华大学, 2019: 67-76.
GU Luoling. Development and test of customized medical pressure socks based on pressure efficacy[D]. Shanghai: Donghua University, 2019: 67-76.
[2] 盖利华. 松紧带裤腰压力舒适性研究[D]. 上海: 东华大学, 2018: 31-61.
GAI Lihua. Research on pressure comfort of elastic waistband[D]. Shanghai: Donghua University, 2018: 31-61.
[3] 曲畅. 基于干湿状态的女士连体泳衣压力舒适性研究[D]. 上海: 上海工程技术大学, 2015: 63-68.
QU Chang. Research on pressure comfort of ladies one-piece swimsuit based on wet and dry state[D]. Shanghai: Shanghai University of Engineering Science, 2015: 63-68.
[4] 段彩玲. 合体女衬衫的压力舒适性研究[D]. 上海: 东华大学, 2018: 53-64.
DUAN Cailing. Research on pressure comfort of fitted blouse[D]. Shanghai: Donghua University, 2018: 53-64.
[5] 韩烨, 衣卫京, 郭瑞良. 基于运动疲劳调查分析的紧身跑步裤设计[J]. 针织工业, 2020(1): 63-66.
HAN Ye, YI Weijing, GUO Ruiliang. Design of tight running pants based on investigation and analysis of exercise fatigue[J]. Knitting Industries, 2020(1): 63-66.
[6] 李春雨. 面向静态体压分布和垂向振动响应的坐姿人体模型建模[D]. 重庆: 重庆大学, 2018: 37-59.
LI Chunyu. Modeling of sitting human body model for static body pressure distribution and vertical vibration response[D]. Chongqing: Chongqing University, 2018: 37-59.
[7] 张竟, 韩旭, 文桂林. 基于ADAMS.LifeMOD的人体头颈部动力学仿真与验证[J]. 系统仿真学报, 2008, 20(10): 2718-2721.
ZHANG Jing, HAN Xu, WEN Guilin. Simulation and verification of human head and neck dynamics based on ADAMS.LifeMOD[J]. Journal of System Simulation, 2008, 20(10): 2718-2721.
[8] VARGHESE N, THILAGAVATHI G. Handle, fit and pressure comfort of silk/hybrid yarn woven stretch fabrics[J]. Fibers and Polymers, 2016, 17(3): 484-494.
doi: 10.1007/s12221-016-5561-5
[9] TIAN Hui, JIANG Yaming, QI Yexiong, et al. Study of knitted fabrics with ultra-low modulus based on geometrical deformation mechanism[J]. Textile Research Journal, 2019, 89(5): 891-899.
doi: 10.1177/0040517518758004
[10] WU Jiahong, JIN Zimin, JIN Jing, et al. Study on the tensile modulus of seamless fabric and tight compression finite element modeling[J]. Textile Research Journal, 2020, 90(1): 110-122.
doi: 10.1177/0040517519859931
[11] 李小欢. 压力臂套的精确设计方法研究[D]. 天津: 天津工业大学, 2017: 17-40.
LI Xiaohuan. Research on accurate design method of pressure arm sleeve[D]. Tianjin: Tiangong University, 2017: 17-40.
[12] HORIBA Y, AMANO T, INUI S, et al. Proposal of method for estimating clothing pressure of tight-fitting garment made from highly elastic materials: hybrid method using apparel CAD and finite element analysis software[J]. Journal of Fiber Science and Technology, 2021(2): 76-87.
[13] 姜雪雯, 杨昆. 服装压力测试方法及研究进展[J]. 针织工业, 2021(6): 63-66.
JIANG Xuewen, YANG Kun. Garment pressure testing methods and research progress[J]. Knitting Industries, 2021(6): 63-66.
[14] LI Y M, ZHANG W W, JU F, et al. Study on clothing pressure distribution of calf based on finite element method[J]. Journal of The Textile Institute, 2014, 105(9): 955-961.
doi: 10.1080/00405000.2013.865883
[15] DAN R, SHI Z. Dynamic simulation on the area shrinkage of lower leg for the top part of men's socks using finite element method[J]. Journal of The Textile Institute, 2018, 110(4): 543-551.
doi: 10.1080/00405000.2018.1499185
[16] DAN R, SHI Z. Finite element simulation on the relationship between pressure and displacement for the waist of elastic pantyhose[J]. International Journal of Clothing Science and Technology, 2020, 33(2): 289-301.
doi: 10.1108/IJCST-03-2020-0037
[17] 王洋, 覃石磊, 郑民, 等. Mimics三维重建软件结合CT穿刺弹簧圈定位在肺小结节手术中的应用[J]. 中国医学物理学杂志, 2023, 40(7): 868-871.
WANG Yang, QIN Shilei, ZHENG Min, et al. Application of Mimics 3D reconstruction software combined with CT puncture coil positioning in small pulmonary nodules surgery[J]. Chinese Journal of Medical Physics, 2023, 40(7): 868-871.
[18] 王永琪. 髋关节的CT图像分割及其三维定量分析[D]. 绵阳: 西南科技大学, 2021: 17-31.
WANG Yongqi. CT image segmentation and three-dimensional quantitative analysis of hip joint[D]. Mianyang: Southwest University of Science and Technology, 2021: 17-31.
[19] YANG D, WEI Q S, CHEN X G, et al. Investigation of ballistic performance on 3D compound structure fabric by finite element analysis[J]. Textile Research Journal, 2022, 92(11/12): 1782-1795.
doi: 10.1177/00405175211060085
[20] PARK S Y, KIM N, HONG K, et al. Clothing pressure, blood flow, and subjective sensations of women in their 50s and 60s when wearing a commercial yoga bra top[J]. Journal of the Korean Society of Clothing and Textiles, 2021, 45(4): 586-597.
doi: 10.5850/JKSCT.2021.45.4.586
[1] 王馨雨, 田明伟. 具有距离监测与辅助提示功能的自闭症儿童智能服装设计[J]. 纺织学报, 2024, 45(03): 156-162.
[2] 刘雨婷, 宋泽涛, 赵胜男, 王星岚, 常素芹. 个体冷却服的研究现状与发展趋势[J]. 纺织学报, 2023, 44(12): 233-241.
[3] 苗雪, 王永进, 王方明. 充气保暖复合面料厚度与热阻的相关性分析[J]. 纺织学报, 2023, 44(11): 176-182.
[4] 马亮, 李俊. 多种智能技术在防寒服装功能研发中的应用进展[J]. 纺织学报, 2022, 43(06): 206-214.
[5] 刘杰, 高志. 基于柔性薄膜传感器的服装压力检测仪研制[J]. 纺织学报, 2021, 42(12): 159-165.
[6] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[7] 程宁波, 吴志明, 柯思成. 服装压力对男子骑行运动中肌肉疲劳的影响[J]. 纺织学报, 2019, 40(08): 130-135.
[8] 王永荣 罗胜利 廖银琳 刘宇. 女性服装压力舒适阈限的测试与研究[J]. 纺织学报, 2018, 39(03): 132-136.
[9] 卢华山 阎玉秀 李梦园 许淑燕 金子敏. 跑步运动中服装压对女子下肢肌肉疲劳的影响[J]. 纺织学报, 2017, 38(07): 118-123.
[10] 陈丽华. 织物定伸长力与弹力服装宽裕量的关系[J]. 纺织学报, 2016, 37(07): 115-0120.
[11] 阎玉秀 高婕 金子敏 唐洁芳 陶建伟. 女子篮球运动内衣压力对心率变异指标的影响[J]. 纺织学报, 2014, 35(6): 100-0.
[12] 张吉生 吴志明 储云明. 经编无缝女束身上衣的塑身性能[J]. 纺织学报, 2014, 35(3): 109-0.
[13] 吴志明;赵敏;陈星毅. 颈部服装压对人体颈动脉窦生理的影响[J]. 纺织学报, 2011, 32(5): 98-102.
[14] 刘红;陈东生;魏取福. 服装压力对人体生理的影响及其客观测试[J]. 纺织学报, 2010, 31(3): 138-142.
[15] 金子敏;罗晓菊;阎玉秀;陶建伟. 男式无缝上衣压力的分布规律及其舒适压范围[J]. 纺织学报, 2010, 31(10): 104-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!