纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 19-27.doi: 10.13475/j.fzxb.20220900701
郑晓頔1, 盛平厚1(), 蒋佳岑2, 李睿1, 焦红娟1, 邱志成1
ZHENG Xiaodi1, SHENG Pinghou1(), JIANG Jiacen2, LI Rui1, JIAO Hongjuan1, QIU Zhicheng1
摘要:
为解决纳米铜抗菌剂在纤维中分散性、界面相容性差的问题,采用油酸对纳米球形铜抗菌剂进行包覆处理,并与聚酰胺6(PA6)基体共混挤出造粒制得抗菌防螨PA6切片,再经熔融单组分纺丝和熔融复合纺丝制得铜改性抗菌防螨PA6纤维。对铜抗菌剂的形貌结构和界面相容性,抗菌防螨PA6切片的热稳定性和可纺性以及纤维的铜含量、力学性能和抗菌防霉防螨性能进行分析。结果表明:油酸包覆球形铜抗菌剂的分散性较好,且与PA6基体相容性良好,抗菌防螨PA6切片的热稳定性、可纺性良好;铜改性抗菌防螨PA6纤维的颜色均匀性一致,纤维制成率高达88%,铜改性PA6拉伸变形丝的断裂伸长率为29.95%,断裂强度达到4.43 cN/dtex;洗涤50次前后铜改性抗菌防螨PA6纤维对白色念珠菌、金黄色葡萄球菌、大肠杆菌的抑菌率均大于99%,其织物防霉等级达到0级,螨虫驱避率达到89%,抗菌防霉防螨性能高效耐久。
中图分类号:
[1] | QIU Q, CHEN S, LI Y, et al. Functional nanofibers embedded into textiles for durable antibacterial properties[J]. Chemical Engineering Journal, 2020. DOI:10.1016/j.cej.2019.123241. |
[2] |
MIKOLAY A, HUGGETT S, TIKANA L, et al. Survival of bacteria on metallic copper surfaces in a hospital trial[J]. Applied Microbiology and Biotechnology, 2010, 87(5): 1875-1879.
doi: 10.1007/s00253-010-2640-1 pmid: 20449737 |
[3] | IBRAHIM N A. Nanomaterials for antibacterial textiles[M]. Pittsburgh: Academic Press, 2015: 191-216. |
[4] | 王仲霞, 陈春凤. 国内抗菌锦纶6的研发现状[J]. 合成纤维工业, 2021, 44(1):54-58. |
WANG Zhongxia, CHEN Chunfeng. Research progress on antibacterial polyamide 6 fiber in China[J]. China Synthetic Fiber Industry, 2021, 44(1): 54-58. | |
[5] |
MALACHOVA K, PRAUS P, RYBKOVA Z, et al. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites[J]. Applied Clay Science, 2011, 53(4): 642-645.
doi: 10.1016/j.clay.2011.05.016 |
[6] | 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11):102-108. |
JIANG Xingmao, LIU Qi, GUO Lin. Structure and antibacterial properties of silica coated silver-copper nanoparticles[J]. Journal of Textile Research, 2020, 41(11): 102-108. | |
[7] |
JAYASEELAN C, RAHUMAN A A, KIRTHI A V, et al. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 90: 78-84.
doi: 10.1016/j.saa.2012.01.006 |
[8] |
SHIVAJI S, MADHU S, SINGH S. Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria[J]. Process Biochemistry, 2011, 46(9): 1800-1807.
doi: 10.1016/j.procbio.2011.06.008 |
[9] |
AMARJARGAL A, TIJING L D, PANT H R, et al. Simultaneous synthesis of TiO2 microrods in situ decorated with Ag nanoparticles and their bactericidal efficiency[J]. Current Applied Physics, 2012, 12(4): 1106-1112.
doi: 10.1016/j.cap.2012.02.003 |
[10] | REN G, HU D, CHENG E, et al. Characterization of copper oxide nanoparticles for antibacterial applications[J]. International Journal of Antibacterial Agents, 2009, 33(6): 587-590. |
[11] |
CAN H, DENG, JI L, et al. Graphene sponge decorated with copper nanoparticles as a novel bactericidal filter for inactivation of Escherichia coli[J]. Chemosphere, 2017, 184:347-357.
doi: 10.1016/j.chemosphere.2017.05.118 |
[12] |
UAUY R, OLIVARES M, GONZALEZ M. Essentiality of copper in humans[J]. Nutrition Review, 2010, 45(8): 176-180.
doi: 10.1111/j.1753-4887.1987.tb06081.x |
[13] |
GOPAL A, KANT V, GOPALAKRISHNAN A, et al. Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats[J]. European Journal of Pharmacology, 2014, 731:8-19.
doi: 10.1016/j.ejphar.2014.02.033 pmid: 24632085 |
[14] | LONGANO D, DITARANTO N, CIOFFI N, et al. Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging[J]. Analytical & Bioanalytical Chemistry, 2012, 403: 1179-1186. |
[15] | DANKOVICH T A, LEVINE J S, POTGIETER N, et al. Inactivation of bacteria from contaminated streams in Limpopo, South Africa by silver-or copper-nanoparticle paper filters[J]. Environmental Science: Water Research & Technology, 2015, 2(1): 85-96. |
[16] |
DASTJERDI R, MONTAZER M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties[J]. Colloids Surf B: Biointerfaces, 2010, 79(1): 5-18.
doi: 10.1016/j.colsurfb.2010.03.029 |
[17] | YUAN G, CRANSTON R. Recent advances in antibacterial treatments of textiles[J]. Overseas Technical Literature Collection, 2008, 60(1): 60-72. |
[18] | 周能. 油酸包覆Fe3O4/硅橡胶纳米复合材料的制备及其力学与磁性能的研究[D]. 南昌: 南昌大学, 2020: 14-23. |
ZHOU Neng. Fabrication of oleic acid-modified Fe3O4/silicone rubber nanocomposites and their mechanical and magnetic properties[D]. Nanchang: Nanchang University, 2020: 14-23. | |
[19] | 李宝兴. 油酸改性氢氧化镁阻燃剂及其在EVA中的应用[D]. 西安: 西安电子科技大学, 2014: 20-42. |
LI Baoxing. The surface modification of magnesium hydroxide by oleic acid and its application in EVA[D]. Xi'an: Xidian University, 2014: 20-42. | |
[20] | 郭慧龙, 蔡紫薇, 孙露敏, 等. 不同温度下尼龙6性能和结构变化的原位研究[J]. 高分子学报, 2015(10): 1175-1179. |
GUO Huilong, CAI Ziwei, SUN Lumin, et al. Temperature dependent mechanical properties and structure of nylon 6[J]. Acta Polymerica Sinica, 2015(10): 1175-1179. | |
[21] |
HOLMES D R, BUNN C W, SMITH D J J. The crystal structure of polyeaproamide: nylon 6[J]. Journal of Polymer Science, 1955, 17: 159-177.
doi: 10.1002/pol.12.v17:84 |
[22] |
ARIMOTO H, ISHIBASHI M, HIRAI M, et al. Crystal structure of the γ form of nylon 6[J]. Journal of Polymer Science Part A: General Papers, 1965, 3: 317-326.
doi: 10.1002/pol.10.v3:1 |
[23] | 高称意. 锦纶纤维特性及纤维骨架材料的发展[J]. 中国橡胶, 2004(20): 20-24. |
GAO Chenyi. Characteristics of nylon fiber and development of fiber skeleton materials[J]. China Rubber, 2004(20): 20-24. | |
[24] | 王东微. 几种抗菌表面的构建及机理研究[D]. 成都: 西南交通大学, 2016: 8-18. |
WANG Dongwei. Preparation of several antibiotic material surfaces and characterization of mechanisms[D]. Chengdu: Southwest Jiaotong University, 2016: 8-18. | |
[25] | 胡晓娟. 铜抗菌作用的生物物理学研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2016: 35-36. |
HU Xiaojuan. Biophysical insights into the antibacterial mechanism of copper[D]. Shanghai: Graduate School of Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2016: 35-36. |
[1] | 史玉磊, 曲连艺, 刘江龙, 徐英俊. 氧化锌/儿茶酚甲醛树脂微球抗菌粘胶纤维的制备及其性能[J]. 纺织学报, 2024, 45(02): 21-27. |
[2] | 魏义慧, 张宇静, 邓辉话, 邓庆辉, 陈浩锵, 张须臻, 于斌, 朱斐超. 高熔融指数聚乙烯母粒的制备及其红外透射熔喷材料的可纺性[J]. 纺织学报, 2024, 45(02): 28-35. |
[3] | 杨智超, 刘淑强, 吴改红, 贾潞, 张曼, 李甫, 李慧敏. 可吸收手术缝合线研究进展[J]. 纺织学报, 2024, 45(01): 230-239. |
[4] | 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55. |
[5] | 刘亚, 赵晨, 庄旭品, 赵义侠, 程博闻. 基于Polyflow模拟的茂金属聚乙烯纺黏长丝制备及其性能[J]. 纺织学报, 2023, 44(12): 1-9. |
[6] | 刘星辰, 钱永芳, 吕丽华, 王迎. 胶原蛋白肽/聚乙二醇共混静电纺纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(08): 34-40. |
[7] | 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27. |
[8] | 胡宝继, 张巧玲, 王旭. 聚乙二醇改性热塑性环氧树脂及其可纺性[J]. 纺织学报, 2023, 44(02): 63-68. |
[9] | 任嘉玮, 张圣明, 吉鹏, 王朝生, 王华平. 磷硅改性阻燃抑熔滴聚酯纤维的制备及其性能[J]. 纺织学报, 2023, 44(02): 1-10. |
[10] | 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8. |
[11] | 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106. |
[12] | 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47. |
[13] | 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59. |
[14] | 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36. |
[15] | 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56. |
|