纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 19-27.doi: 10.13475/j.fzxb.20220900701

• 纤维材料 • 上一篇    下一篇

铜改性抗菌防螨聚酰胺6纤维的制备及其性能

郑晓頔1, 盛平厚1(), 蒋佳岑2, 李睿1, 焦红娟1, 邱志成1   

  1. 1.中国纺织科学研究院有限公司 生物源纤维制造技术国家重点实验室, 北京 100025
    2.内蒙古工业大学 轻工与纺织学院, 内蒙古 呼和浩特 010081
  • 收稿日期:2022-12-02 修回日期:2023-03-12 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 盛平厚
  • 作者简介:郑晓頔(1991—),女,高级工程师,博士。主要研究方向为纤维用功能粉体制备、应用与性能调控。

Preparation and performance of copper modified antimicrobial and anti-mite polyamide 6 fiber

ZHENG Xiaodi1, SHENG Pinghou1(), JIANG Jiacen2, LI Rui1, JIAO Hongjuan1, QIU Zhicheng1   

  1. 1. State Key Laboratory of Biobased Fiber Manufacturing Technology, China Textile Academy, Beijing 100025, China
    2. College of Light Industry and Textiles, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010081, China
  • Received:2022-12-02 Revised:2023-03-12 Published:2024-03-15 Online:2024-04-15
  • Contact: SHENG Pinghou

摘要:

为解决纳米铜抗菌剂在纤维中分散性、界面相容性差的问题,采用油酸对纳米球形铜抗菌剂进行包覆处理,并与聚酰胺6(PA6)基体共混挤出造粒制得抗菌防螨PA6切片,再经熔融单组分纺丝和熔融复合纺丝制得铜改性抗菌防螨PA6纤维。对铜抗菌剂的形貌结构和界面相容性,抗菌防螨PA6切片的热稳定性和可纺性以及纤维的铜含量、力学性能和抗菌防霉防螨性能进行分析。结果表明:油酸包覆球形铜抗菌剂的分散性较好,且与PA6基体相容性良好,抗菌防螨PA6切片的热稳定性、可纺性良好;铜改性抗菌防螨PA6纤维的颜色均匀性一致,纤维制成率高达88%,铜改性PA6拉伸变形丝的断裂伸长率为29.95%,断裂强度达到4.43 cN/dtex;洗涤50次前后铜改性抗菌防螨PA6纤维对白色念珠菌、金黄色葡萄球菌、大肠杆菌的抑菌率均大于99%,其织物防霉等级达到0级,螨虫驱避率达到89%,抗菌防霉防螨性能高效耐久。

关键词: 球形铜抗菌剂, 聚酰胺6纤维, 油酸, 可纺性, 抗菌性能, 防螨性能

Abstract:

Objective The application of copper antimicrobial agent in fiber materials is faced with three major problems. Firstly, the functional nano powder has serious agglomeration and poor compatibility with polymer materials, which makes it difficult to disperse evenly. Secondly, copper is easy to be oxidized and discolored, resulting in poor stability and uniformity of fiber color. Thirdly, spinnability and mechanical properties of fiber decrease with the increase of antimicrobial agent content, therefore it is difficult to increase the content of copper antimicrobial agent in the fiber. It is important to improve the dispersion, interfacial compatibility, and antioxidant properties of copper antimicrobial agent in fibers.

Method In this study, the nano spherical copper antimicrobial agent was coated with oleic acid. Two types of copper modified PA6 antimicrobial masterbatch containing 1.1% and 2.1% copper antimicrobial agent were obtained by squeezing granulation. Copper modified PA6 antimicrobial and anti-mite fibers were obtained by melt spinning and composite spinning, respectively. The structure, morphology and interfacial compatibility of copper antimicrobial agent, thermal stability and spinnability of antimicrobial masterbatch, copper content, mechanical properties, antimicrobial, and anti-mite properties of fiber and fabric samples were analyzed.

Results The diffraction peaks were found sharp with no other impurity peaks appearing, indicating that the sample was well crystallized and was still pure after modification. No obvious weight loss is found during the dehydration at about 100 ℃, which indicated satisfactory hydrophobicity of the sample. Sample C1 showed about 0.4% of weight loss at 300 ℃, and its thermal stability met the requirement of melt spinning, and the dispersion was good without large-size agglomeration under the electron microscope and showed good hydrophobicity with water contact angle of 146°, which was consistent with the TG results. Whether it is melted spinning or composite spinning, pre-oriented yarn sample had high fiber yield of 94%. The fiber yield of draw textured yarn sample is 93% and 94%, respectively. The modified spherical copper antimicrobial agent hardly affected the mechanical properties of PA6, which could be attributed to the reduced agglomeration and improved dispersion of the oleic acid modified spherical copper antimicrobial agent, resulting in fewer large rigid particles in the fiber. The interfacial interaction between PA6 and copper particles was enhanced with the help of oleic acid. The elongation at break of the copper modified PA6 fiber was 29.95% and the tensile breaking strength was 4.43 cN/dtex. For Candida albicans, Staphylococcus aureus and Escherichia coli, copper modified PA6 DTY sample (X1') and copper modified PA6 sheath-core DTY sample (X2') both have high bacteriostasis rate of 99%. The bacteriostasis rate was still over 99% after washing for 50 cycles, indicating that the samples had good resistance to washing and superior long-lasting antibacterial performance. After washing, the copper content of the X1' sample was 1.26% and that of the X2' sample was 1.11%. Compared with the copper content of the two fiber samples before washing, the copper content remained basically the same within the allowable testing error. For mixed test, fungi colony consists of Aspergillus niger, Trichoderma viride, Penicillium funiculosum and Chaetomium globosum, the mildew proof grade of the fiber reached grade 0, meaning no obvious mildew colony under magnifier. X2' samples were woven into fabric for the anti-mite performance test. The result showed that the average number of mites in the test group was 22 and that in control group was 194, suggesting the repellent rate of mites of 89%.

Conclusion The dispersibility of oleic acid coated spherical copper antimicrobial agent and its compatibility with PA6 are good. Copper modified PA6 antimicrobial masterbatch has good thermal stability and spinnability. Copper modified PA6 antimicrobial and anti-mite fiber has high fiber yield of 88% and excellent color consistency at a high antimicrobial addition of 1.1%. The mechanical property of the fiber is adjustable. The antimicrobial, mildewproof and anti-mite properties of fiber samples are strong and durable. Therefore, copper modified PA6 antimicrobial and anti-mite fibers have broad industrial application potentiality in military personal protective equipment, fiber products for medical and health industry and textiles for civil clothing and home decoration.

Key words: spherical copper antimicrobial agent, polyamide 6 fiber, oleic acid, spinnability, antimicrobial property, anti-mite property

中图分类号: 

  • TS102.6

图1

C1样品的XRD图谱和TG曲线"

图2

C0和C1样品的扫描电镜照片"

图3

M0和M1样品的DSC与TG曲线"

表1

纤维样品的可纺性"

样品
编号
断裂
强度/
(cN·dtex-1)
断裂
伸长率/
%
POY
制成
率/%
POY-DTY
制成率/
%
DTY总制
成率/
%
X1 3.80 62.28 94
X2 3.45 76.96 94
X1' 4.43 29.95 94 88
X2' 4.36 28.76 93 87

图4

X1纤维样品的SEM照片"

表2

X1纤维样品表面EDS扫描结果"

扫描区域 质量百分比/% 原子百分比/%
C O Cu C O Cu
纤维表面颗粒
点扫描
61.47 28.08 10.46 72.72 24.94 2.34
纤维表面
区域扫描
65.07 34.61 0.32 71.42 28.52 0.07

图5

纤维样品的XRD图谱"

表3

纤维样品的线密度、力学性能和取向因子对比"

样品
编号
牵伸
倍数
线密度/
dtex
断裂强度/
(cN·dtex-1)
断裂
伸长率/%
取向
因子
X3 1.0 118.91 3.04 86.94 0.57
X4 1.2 100.72 3.34 46.67 0.67
X5 1.3 94.04 3.88 39.67 0.72
X6 1.5 82.22 4.46 21.67 0.74

图6

拉伸断裂后抗菌防螨纤维样品断裂处 的扫描电镜照片(×5 000)"

表4

X1纤维样品拉伸断裂处EDS扫描结果"

扫描区域 质量百分比/%
C O Cu Pt K Cl
纤维断裂处
颗粒点扫描
52.67 18.37 -1.79 12.84 9.75 8.15
纤维断裂处
区域扫描
59.44 22.79 -0.51 18.28

表5

纤维样品的抗菌性能对比"

样品
编号
洗涤处理 抑菌率%
对大肠杆菌 对金黄色
葡萄球菌
对白色
念珠菌
X1' 未洗涤 >99 >99 >99
洗涤50次 >99 >99 >99
X2' 未洗涤 >99 >99 >99
洗涤50次 >99 >99 >99

表6

织物样品的抗菌性能对比"

样品
编号
洗涤处理 抑菌率/%
对大肠
杆菌
对金黄色
葡萄球菌
对白色
念珠菌

S1
未洗涤 >99 >99 92
洗涤50次 >99 >99 93

S2
未洗涤 >99 >99 >99
洗涤50次 >99 >99 >99

S3
未洗涤 >99 >99 >99
洗涤50次 >99 >99 >99
[1] QIU Q, CHEN S, LI Y, et al. Functional nanofibers embedded into textiles for durable antibacterial properties[J]. Chemical Engineering Journal, 2020. DOI:10.1016/j.cej.2019.123241.
[2] MIKOLAY A, HUGGETT S, TIKANA L, et al. Survival of bacteria on metallic copper surfaces in a hospital trial[J]. Applied Microbiology and Biotechnology, 2010, 87(5): 1875-1879.
doi: 10.1007/s00253-010-2640-1 pmid: 20449737
[3] IBRAHIM N A. Nanomaterials for antibacterial textiles[M]. Pittsburgh: Academic Press, 2015: 191-216.
[4] 王仲霞, 陈春凤. 国内抗菌锦纶6的研发现状[J]. 合成纤维工业, 2021, 44(1):54-58.
WANG Zhongxia, CHEN Chunfeng. Research progress on antibacterial polyamide 6 fiber in China[J]. China Synthetic Fiber Industry, 2021, 44(1): 54-58.
[5] MALACHOVA K, PRAUS P, RYBKOVA Z, et al. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites[J]. Applied Clay Science, 2011, 53(4): 642-645.
doi: 10.1016/j.clay.2011.05.016
[6] 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11):102-108.
JIANG Xingmao, LIU Qi, GUO Lin. Structure and antibacterial properties of silica coated silver-copper nanoparticles[J]. Journal of Textile Research, 2020, 41(11): 102-108.
[7] JAYASEELAN C, RAHUMAN A A, KIRTHI A V, et al. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 90: 78-84.
doi: 10.1016/j.saa.2012.01.006
[8] SHIVAJI S, MADHU S, SINGH S. Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria[J]. Process Biochemistry, 2011, 46(9): 1800-1807.
doi: 10.1016/j.procbio.2011.06.008
[9] AMARJARGAL A, TIJING L D, PANT H R, et al. Simultaneous synthesis of TiO2 microrods in situ decorated with Ag nanoparticles and their bactericidal efficiency[J]. Current Applied Physics, 2012, 12(4): 1106-1112.
doi: 10.1016/j.cap.2012.02.003
[10] REN G, HU D, CHENG E, et al. Characterization of copper oxide nanoparticles for antibacterial applications[J]. International Journal of Antibacterial Agents, 2009, 33(6): 587-590.
[11] CAN H, DENG, JI L, et al. Graphene sponge decorated with copper nanoparticles as a novel bactericidal filter for inactivation of Escherichia coli[J]. Chemosphere, 2017, 184:347-357.
doi: 10.1016/j.chemosphere.2017.05.118
[12] UAUY R, OLIVARES M, GONZALEZ M. Essentiality of copper in humans[J]. Nutrition Review, 2010, 45(8): 176-180.
doi: 10.1111/j.1753-4887.1987.tb06081.x
[13] GOPAL A, KANT V, GOPALAKRISHNAN A, et al. Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats[J]. European Journal of Pharmacology, 2014, 731:8-19.
doi: 10.1016/j.ejphar.2014.02.033 pmid: 24632085
[14] LONGANO D, DITARANTO N, CIOFFI N, et al. Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging[J]. Analytical & Bioanalytical Chemistry, 2012, 403: 1179-1186.
[15] DANKOVICH T A, LEVINE J S, POTGIETER N, et al. Inactivation of bacteria from contaminated streams in Limpopo, South Africa by silver-or copper-nanoparticle paper filters[J]. Environmental Science: Water Research & Technology, 2015, 2(1): 85-96.
[16] DASTJERDI R, MONTAZER M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties[J]. Colloids Surf B: Biointerfaces, 2010, 79(1): 5-18.
doi: 10.1016/j.colsurfb.2010.03.029
[17] YUAN G, CRANSTON R. Recent advances in antibacterial treatments of textiles[J]. Overseas Technical Literature Collection, 2008, 60(1): 60-72.
[18] 周能. 油酸包覆Fe3O4/硅橡胶纳米复合材料的制备及其力学与磁性能的研究[D]. 南昌: 南昌大学, 2020: 14-23.
ZHOU Neng. Fabrication of oleic acid-modified Fe3O4/silicone rubber nanocomposites and their mechanical and magnetic properties[D]. Nanchang: Nanchang University, 2020: 14-23.
[19] 李宝兴. 油酸改性氢氧化镁阻燃剂及其在EVA中的应用[D]. 西安: 西安电子科技大学, 2014: 20-42.
LI Baoxing. The surface modification of magnesium hydroxide by oleic acid and its application in EVA[D]. Xi'an: Xidian University, 2014: 20-42.
[20] 郭慧龙, 蔡紫薇, 孙露敏, 等. 不同温度下尼龙6性能和结构变化的原位研究[J]. 高分子学报, 2015(10): 1175-1179.
GUO Huilong, CAI Ziwei, SUN Lumin, et al. Temperature dependent mechanical properties and structure of nylon 6[J]. Acta Polymerica Sinica, 2015(10): 1175-1179.
[21] HOLMES D R, BUNN C W, SMITH D J J. The crystal structure of polyeaproamide: nylon 6[J]. Journal of Polymer Science, 1955, 17: 159-177.
doi: 10.1002/pol.12.v17:84
[22] ARIMOTO H, ISHIBASHI M, HIRAI M, et al. Crystal structure of the γ form of nylon 6[J]. Journal of Polymer Science Part A: General Papers, 1965, 3: 317-326.
doi: 10.1002/pol.10.v3:1
[23] 高称意. 锦纶纤维特性及纤维骨架材料的发展[J]. 中国橡胶, 2004(20): 20-24.
GAO Chenyi. Characteristics of nylon fiber and development of fiber skeleton materials[J]. China Rubber, 2004(20): 20-24.
[24] 王东微. 几种抗菌表面的构建及机理研究[D]. 成都: 西南交通大学, 2016: 8-18.
WANG Dongwei. Preparation of several antibiotic material surfaces and characterization of mechanisms[D]. Chengdu: Southwest Jiaotong University, 2016: 8-18.
[25] 胡晓娟. 铜抗菌作用的生物物理学研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2016: 35-36.
HU Xiaojuan. Biophysical insights into the antibacterial mechanism of copper[D]. Shanghai: Graduate School of Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2016: 35-36.
[1] 史玉磊, 曲连艺, 刘江龙, 徐英俊. 氧化锌/儿茶酚甲醛树脂微球抗菌粘胶纤维的制备及其性能[J]. 纺织学报, 2024, 45(02): 21-27.
[2] 魏义慧, 张宇静, 邓辉话, 邓庆辉, 陈浩锵, 张须臻, 于斌, 朱斐超. 高熔融指数聚乙烯母粒的制备及其红外透射熔喷材料的可纺性[J]. 纺织学报, 2024, 45(02): 28-35.
[3] 杨智超, 刘淑强, 吴改红, 贾潞, 张曼, 李甫, 李慧敏. 可吸收手术缝合线研究进展[J]. 纺织学报, 2024, 45(01): 230-239.
[4] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[5] 刘亚, 赵晨, 庄旭品, 赵义侠, 程博闻. 基于Polyflow模拟的茂金属聚乙烯纺黏长丝制备及其性能[J]. 纺织学报, 2023, 44(12): 1-9.
[6] 刘星辰, 钱永芳, 吕丽华, 王迎. 胶原蛋白肽/聚乙二醇共混静电纺纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(08): 34-40.
[7] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[8] 胡宝继, 张巧玲, 王旭. 聚乙二醇改性热塑性环氧树脂及其可纺性[J]. 纺织学报, 2023, 44(02): 63-68.
[9] 任嘉玮, 张圣明, 吉鹏, 王朝生, 王华平. 磷硅改性阻燃抑熔滴聚酯纤维的制备及其性能[J]. 纺织学报, 2023, 44(02): 1-10.
[10] 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8.
[11] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[12] 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47.
[13] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[14] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[15] 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!