纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 81-86.doi: 10.13475/j.fzxb.20220905201

• 纺织工程 • 上一篇    下一篇

基于自适应模拟退火算法的整经准备车间排产模型

沈春娅1, 方辽辽2, 彭来湖2, 梁汇江3, 戴宁2, 汝欣2()   

  1. 1.浙江大学 机械工程学院, 浙江 杭州 310058
    2.浙江理工大学 浙江省现代纺织装备技术重点实验室, 浙江 杭州 310018
    3.浙江康立自控科技有限公司, 浙江 绍兴 312500
  • 收稿日期:2022-09-20 修回日期:2023-10-05 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 汝欣
  • 作者简介:沈春娅(1993—),女,博士。主要研究方向为智能纺织装备技术。
  • 基金资助:
    浙江省博士后科研项目特别资助项目(ZJ2020004);浙江省科技计划项目(2022C01202);浙江省公益技术研究计划项目(LGG21E050024);浙江理工大学科研启动基金项目(18022224-Y)

Production scheduling of warping department based on adaptive simulated annealing algorithm

SHEN Chunya1, FANG Liaoliao2, PENG Laihu2, LIANG Huijiang3, DAI Ning2, RU Xin2()   

  1. 1. School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
    2. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Zhejiang Kangli Automatic Control Technology Co., Ltd., Shaoxing, Zhejiang 312500, China
  • Received:2022-09-20 Revised:2023-10-05 Published:2024-03-15 Online:2024-04-15
  • Contact: RU Xin

摘要:

为解决织造企业整经准备车间在多约束条件下的生产效率低下及经轴利用率低的问题,在考虑经纱总根数、订单米数、经轴绕卷纱线长度、经轴绕卷纱线根数等约束条件的情况下,以开轴数和加工时间为目标函数,建立满足拼缸条件的整经准备车间生产关系主从优化关联模型。提出了基于自适应模拟退火算法的整经准备车间生产调度方案,通过引入自适应退火因子有效解决传统模拟退火算法计算效率低及容易陷入局部最优解的缺点,并根据企业实际生产案例进行仿真实验。结果表明:该自适应模拟退火算法能够有效地提升纺织企业整经生产调度效率,提升经轴利用率;且该方法提升整经准备车间运行效率和经轴利用率的能力要优于其它算法。

关键词: 织造车间, 整经排产, 模拟退火, 多目标优化, 约束优化, 生产效率

Abstract:

Objective Taking the warping scheduling of weaving enterprises as the research object, the yarn types and order quantities are reasonably configured through intelligent algorithms based on the actual scheduling needs, aiming to achieve the optimization of production scheduling, improve production efficiency, reduce waste of raw materials, and increase production capacity. In order to solve the problems of low production efficiency and low utilization of warping shafts in warping department of weaving enterprises under multiple constraint conditions, the optimization achieved through intelligent algorithms in configuring yarn types and order quantities can significantly enhance the efficiency of the entire process flow, thereby realizing an increase in production capacity.

Method Taking the total number of warp ends, order meters, winding length of warp beam, warp ends per warp beam and others as the constraints, and the number of warp beams and processing time as the objective functions, the master-slave optimization correlation model of production relations in warping department meeting the cylinder assembly conditions was established. A production scheduling scheme of the warping department based on adaptive simulated annealing algorithm was proposed. By introducing an adaptive annealing factor, the shortcomings of conventional simulated annealing algorithms such as low computational efficiency and susceptibility to local optima were effectively overcome.

Results In order to verify that the master-slave model and its solution algorithm of multi-constraints production scheduling are suitable for warp beam preparation, the production order of a certain production cycle in the warping department of a textile enterprise was taked as an example. the adaptive simulated annealing algorithm (ASAA), simulate anneal algorithm (SAA) and genetic algorithm (GA) were adopted to solve the orders. The smaller the number of warp beams, the shorter the processing time and algorithm running time, the better the algorithm optimization effect. According to the data of an individual order, the experimental simulation was carried out with the number of warp beams, processing time and algorithm running time as the objectives. The utilization rate of the warp beam obtained by using the ASAA proposed in this paper was in general better than the other two algorithms, and the solution obtained in 30 experiments was less volatile and more stable. The solution sets of the three algorithms for the 30 experiments with two objective functions as the coordinate axis. Smaller values of the two objective functions would indicate better solution. The solution set of ASAA was more concentrated on the lower left part, showing that the solution set of ASAA yielded smaller objective functions with better performance. It was evident that ASAA outperformed the other two algorithms in terms of computational efficiency when solving the warping scheduling problem. For the same order, in 30 experiments, the ASAA could save an average of 20% of the operation time compared with the other two algorithms.

Conclusion Based on the research on the production scheduling problem in warping department of weaving enterprises, an optimization model of warping production scheduling for multi-constraint conditions and warp beam production is constructed, and simulation experiments are carried out according to the actual production cases of enterprises. The results show that the adaptive simulated annealing algorithm proposed in this paper can effectively improve the efficiency of warping production scheduling in textile enterprises, and improve the utilization of warp beams. However, considering that the actual production process would be much more complex than the experimental environment, and unstable factors such as order insertion, equipment failure, and shortage of raw materials need to be considered, further improvement of the model is an important direction for future research.

Key words: weaving workshop, warping scheduling, simulated annealing, multi-objective optimization, constrained optimization, production efficiency

中图分类号: 

  • TS111.8

图1

双层交互式的整经排产流程"

图2

自适应模拟退火流程图"

表1

车间订单信息(节选)"

订单编号 纱线品种 订单
长度/m
总经
根数
PM22012201 SF2810 11 600 6 740
PM22012202 SF2809 2 900 6 130
PM22012203 SA2811 7 800 8 340
? ? ? ?
PM22012211 SF2809 7 300 8 490
PM22012212 SF2810 2 100 7 950
? ? ? ?
PM22012218 SF2810 5 300 7 920
PM22012219 SA2811 9 800 8 330
PM22012220 SF2810 11 900 7 090

图3

不同算法开轴数对比"

图4

不同算法目标函数对比"

图5

不同算法运行时间对比图"

[1] 陈革, 杨建成. 纺织机械概论[M]. 北京: 中国纺织出版社, 2011:65-67.
CHEN Ge, YANG Jiancheng. Introduction to textile machinery[M]. Beijing: China Textile & Apparel Press, 2011:65-67.
[2] XIA W, WU Z. An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems[J]. Computers & Industrial Engineering, 2005, 48(2): 409-425.
doi: 10.1016/j.cie.2005.01.018
[3] 左益, 公茂果, 曾久琳, 等. 混合多目标算法用于柔性作业车间调度问题[J]. 计算机科学, 2015, 42(9): 220-225.
doi: 10.11896/j.issn.1002-137X.2015.09.042
ZUO Yi, GONG Maoguo, ZENG Jiulin, et al. Hybrid multi-objective algorithm for flexible job shop scheduling problems[J]. Computer Science, 2015, 42 (9): 220-225.
doi: 10.11896/j.issn.1002-137X.2015.09.042
[4] 鲁宏浩, 鲁玉军. 基于分布估计—蚁群混合算法的柔性作业车间调度方法研究[J]. 机电工程, 2019, 36(6): 568-573.
LU Honghao, LU Yujun. Research on flexible job shop scheduling method based on distribution estimation ant colony hybrid algorithm[J]. Mechanical and Electrical Engineering, 2019, 36 (6): 568-573.
[5] 孙延. 基于蚁群算法的纺织企业生产调度技术研究[J]. 电子设计工程, 2015, 23(18): 116-118.
SUN Yan. Research on production scheduling technology for textile enterprises based on ant colony algorithm[J] Electronic Design Engineering, 2015, 23 (18): 116-118.
[6] 李姜, 杨连贺. 信息技术在纺织企业排产计划中的应用[J]. 天津工业大学学报, 2007(1): 69-72.
LI Jiang, YANG Lianhe. The application of information technology in textile enterprise production planning[J]. Journal of Tiangong University, 2007 (1): 69-72.
[7] 杜利珍, 王宇豪, 宣自风, 等. 基于改进模拟退火算法的针织生产线调度研究[J]. 计算机工程与应用, 2023, 59(9): 1-11.
DU Lizhen, WANG Yuhao, XUAN Zifeng, et al. Research on knitting production line scheduling based on improved simulated annealing algorithm[J]. Computer Engineering and Applications, 2023, 59(9): 1-11.
[8] 郑小虎, 鲍劲松, 马清文, 等. 基于模拟退火遗传算法的纺纱车间调度系统[J]. 纺织学报, 2020, 41(6): 36-41.
ZHENG Xiaohu, BAO Jinsong, MA Qingwen, et al. A spinning workshop scheduling system based on simulated annealing genetic algorithm[J]. Journal of Textile Research, 2020, 41 (6): 36-41.
[9] 陈华根, 李丽华, 许惠平, 等. 改进的非常快速模拟退火算法[J]. 同济大学学报(自然科学版), 2006(8): 1121-1125.
CHEN Huagen, LI Lihua, XU Huiping, et al. Improved very fast simulated annealing algorithm[J] Journal of Tongji University (Natural Science Edition), 2006 (8): 1121-1125.
[10] 王凌. 智能优化算法及其应用[M]. 北京: 清华大学出版社, 2004:17-30.
WANG Ling. Intelligent optimization algorithms and their applications[M]. Beijing: Tsinghua University Press, 2001:17-30.
[11] 戴宁, 方辽辽, 胡旭东, 等.一种整经准备车间排产方案的计算方法及装置:202211328259.X[P]. 2023-03-21.
DAI Ning, FANG Liaoliao, HU Xudong, et al. A calculation method and device for production scheduling plan in a warping preparation workshop:202211328259.X[P]. 2023-03-21.
[1] 雷钧杰, 沈春娅, 胡旭东, 汝欣, 彭来湖. 基于NSGAII和神经网络的织造车间大规模调度[J]. 纺织学报, 2023, 44(11): 208-215.
[2] 郑小虎, 刘正好, 陈峰, 刘志峰, 汪俊亮, 侯曦, 丁司懿. 环锭纺纱全流程机器人自动化生产关键技术[J]. 纺织学报, 2022, 43(09): 11-20.
[3] 潘佳豪, 周其洪, 岑均豪, 李姝佳, 周申华. 服装企业包装订单分配排序优化模型及其快速非支配遗传算法求解[J]. 纺织学报, 2022, 43(05): 156-162.
[4] 沈春娅, 雷钧杰, 汝欣, 彭来湖, 胡旭东. 基于改进型NSGAII的织造车间多目标大规模动态调度[J]. 纺织学报, 2022, 43(04): 74-83.
[5] 许雪梅. 基于模拟退火算法改进遗传算法的织物智能配色[J]. 纺织学报, 2021, 42(07): 123-128.
[6] 周亚勤, 王攀, 张朋, 张洁. 纬编织造车间生产调度方法研究[J]. 纺织学报, 2021, 42(04): 170-176.
[7] 郑小虎, 鲍劲松, 马清文, 周衡, 张良山. 基于模拟退火遗传算法的纺纱车间调度系统[J]. 纺织学报, 2020, 41(06): 36-41.
[8] 莫帅, 冯战勇, 唐文杰, 党合玉, 邹振兴. 基于神经网络和遗传算法的锭子弹性管性能优化[J]. 纺织学报, 2020, 41(04): 161-166.
[9] 孟朔, 潘如如, 高卫东, 王静安, 周利军. 采用主目标进化遗传算法的织造排程研究[J]. 纺织学报, 2019, 40(08): 169-174.
[10] 吕汉明 吴擎擎 吕鑫 马崇启 周鹏飞. 基于数据库的环锭纺细纱机细纱断头检测与信息显示[J]. 纺织学报, 2018, 39(04): 123-129.
[11] 韩要宾 张杰 高卫东 潘如如 张宁. 基于生产实践的喷气织机主喷嘴气压优选[J]. 纺织学报, 2017, 38(01): 126-131.
[12] 黄双 郗欣甫 徐洋 孙以泽. 簇绒地毯织机耦联轴系的铰链间隙对毯面绒高的影响[J]. 纺织学报, 2016, 37(08): 132-137.
[13] 徐燕妮 周海媚 王立川 陈雁. 服装缝制流水线仿真与评价指标[J]. 纺织学报, 2015, 36(12): 146-151.
[14] 姜磊. 卷染机自动控制系统的改造设计[J]. 纺织学报, 2015, 36(03): 121-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!