纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 87-96.doi: 10.13475/j.fzxb.20230200701

• 染整工程 • 上一篇    下一篇

亚麻催化氧化与碱煮一浴脱胶工艺及其性能

杨树1, 曹巧丽1, 李季媛2, 李召岭1, 郁崇文1, 张阳3()   

  1. 1.东华大学, 上海 201620
    2.河南平棉纺织集团股份有限公司, 河南 平顶山 467000
    3.天津工业大学, 天津 300387
  • 收稿日期:2023-02-06 修回日期:2023-12-27 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 张阳
  • 作者简介:杨树(1994—),男,博士生。主要研究方向为麻类前处理。
  • 基金资助:
    国家麻类产业技术体系项目(CARS-16);上海市现代纺织前沿科学研究基地项目(2022016);中国纺织工业联合会科技指导性项目(2022011);中国纺织工业联合会科技指导性项目(2022012)

Catalytic oxidation of flax with alkaline boiling in one bath degumming process and its properties

YANG Shu1, CAO Qiaoli1, LI Jiyuan2, LI Zhaoling1, YU Chongwen1, ZHANG Yang3()   

  1. 1. Donghua University, Shanghai 201620, China
    2. Henan Pingmian Textile Group Co., Ltd., Pingdingshan, Henan 467000, China
    3. Tiangong University, Tianjin 300387, China
  • Received:2023-02-06 Revised:2023-12-27 Published:2024-03-15 Online:2024-04-15
  • Contact: ZHANG Yang

摘要:

使用棉纺系统进行亚麻纺纱前需经过脱胶处理,为解决传统碱脱胶工艺得到的亚麻纤维白度低和氧化脱胶时纤维易氧化受损、木质素残留造成纤维断裂伸长率低的问题,采用N-羟基-3,4,5,6-四苯基邻苯二甲酰亚胺(NHTPPI)催化氧化与碱煮一浴的方法对亚麻落麻进行脱胶,研究了pH值,反应温度以及催化剂NHTPPI、助催化剂9,10-蒽醌、双氧水、氢氧化钠质量浓度等因素对脱胶后亚麻纤维断裂强度以及白度的影响,得到了NHTPPI催化氧化与碱煮一浴亚麻脱胶的最佳工艺:pH值为 10.5,反应温度为83.6 ℃,NHTPPI、 9,10-蒽醌、双氧水、氢氧化钠质量浓度分别为0.6、 0.5、10.35、5.67 g/L,此优化条件下得到的亚麻纤维断裂强度为4.39 cN/dtex,白度为70.53%。将催化氧化与碱煮一浴脱胶、高碘酸钠氧化脱胶以及传统碱脱胶与双氧水漂白3种工艺进行对比,发现3种工艺得到的纤维主体长度在28 mm左右,白度均在70 %以上,但催化氧化与碱煮一浴脱胶得到的亚麻纤维断裂强度最高,处理时间最短。

关键词: 亚麻, 前处理, 催化氧化, 碱煮, 脱胶

Abstract:

Objective Flax should be degummed before spinning using cotton spinning system. The degumming process is to remove pectin, hemicellulose, lignin, and other non-cellulosic substances from the raw flax. The whiteness of flax fiber obtained by the conventional alkali degumming process is low, and bleaching is a necessary step. The oxidative degumming process is easy to cause cellulose degradation, which leads to the decrease of fiber breaking strength. Meanwhile, residual oxidized lignin after degumming tends to reduce fiber elongation because of its high lignin rigidity.

Method N-Hydroxy-3,4,5,6-tetraphenylphthalimide (NHTPPI)catalytic oxidation with alkali boiling in one bath was adopeed to degum flax. The NHTPPI catalytic oxidation system selectively oxidizes primary hydroxyl groups at the C6 position of cellulose. This feature was utilized to achieve effective inhibition of the oxidative degradation of cellulose macromolecular chains while removing non-cellulosic material, bleaching fibers, and oxidizing lignin. Finally, the benzene ring and side chain of oxidized lignin were dissolved in sodium hydroxide solution.

Results Single-factor tests were carried out on the concentration of NHTPPI, 9,10-anthraquinone and hydrogen peroxide, pH value, reaction temperature and sodium hydroxide. The results of the single-factor tests showed that the optimum concentrations of hydrogen peroxide was 9 g/L, the reaction temperature was 80 ℃, the pH value was 10.5, the amount of catalyst NHTPPI was 0.6 g/L, the concentrations of co-catalyst 9,10-anthraquinone was 0.5 g/L and the concentrations of sodium hydroxide was 5 g/L. Influences of the factors on the flax fiber breaking strength and whiteness after degumming were then investigated using SPSS statistical analysis software. The results showed that the concentrations of hydrogen peroxide had an extremely significant effect on the flax fiber breaking strength and whiteness. The reaction temperature had a highly significant effect on flax fiber breaking strength and whiteness, and the sodium hydroxide concentration had a significant effect on flax fiber breaking strength and whiteness. It was found that the pH had no significant effect on flax fiber breaking strength and whiteness, the NHTPPI concentration had no significant effect on flax fiber breaking strength and whiteness, and the 9,10-anthraquinone concentration had no significant effect on flax fiber breaking strength and whiteness. A preliminary single-factor test was conducted to determine the ranges of these significant variables, that hydrogen peroxide concentration was in the range of 6-12 g/L, reaction temperature was in the range of 60-100 ℃ and sodium hydroxide concentration was in the range of 2-8 g/L. Their interaction effects and optimization of the reaction conditions were investigated using a central combined design CCD. Response surface analysis was carried out using Design-Expert to obtain the optimum process for flax degumming by NHTPPI catalytic oxidation and alkali boiling in one bath. The results showed that the optimum process for the catalytic oxidation of flax and the degumming in one bath by alkali boiling was as follows: NHTPPI concentration of 0.6 g/L, 9,10-anthraquinone concentration of 0.5 g/L, pH value of 10.5, hydrogen peroxide concentration of 10.35 g/L, reaction temperature of 83.6 ℃, sodium hydroxide concentration of 5.67 g/L. SEM, FT-IR and 13C NMR characterizations showed that after catalytic oxidation with alkali boiling in one bath, most of the non-cellulose components in the flax fiber were removed, the surface was smooth, carboxyl groups were generated on the fiber and only primary hydroxyl groups at the C6 position of flax were selectively catalytically oxidized, which could effectively inhibit the oxidative degradation of the cellulose macromolecular chain and enhance the fiber breaking strength. Compared with the three processes of catalytic oxidation with alkali boiling in one bath degumming, oxidative degumming with sodium periodate and conventional alkali degumming with hydrogen peroxide bleaching, catalytic oxidation with alkali boiling in one bath degumming of flax fiber had the highest breaking strength and the shortest reaction time. The length of fibers obtained by the three processes was about 28 mm, and the whiteness was all over 70%.

Conclusion The average breaking strength of the refined flax fiber prepared in repeat validation tests using the optimum process was 4.39 cN/dtex and the whiteness was 70.53%, which are very close to the predicted values of the CCD model (4.38 cN/dtex, 71.25%). The results show that the CCD model has good predictability for NHTPPI catalytic oxidation and alkali boiling one bath degumming process, and the fine of flax obtained conforms to the national standard. The process has a broad application prospect in the field of flax degumming.

Key words: flax, pretreatment, catalytic oxidation, alkali boiling, degumming

中图分类号: 

  • TS123.3

图1

双氧水质量浓度对亚麻纤维断裂强度及白度的影响"

图2

反应温度对亚麻纤维断裂强度及白度的影响"

图3

pH值对亚麻纤维断裂强度及白度的影响"

图4

NHTPPI质量浓度对亚麻纤维断裂强度及白度的影响"

图5

9,10-蒽醌质量浓度对亚麻纤维断裂强度及白度的影响"

图6

氢氧化钠质量浓度对亚麻纤维断裂强度及白度的影响"

表1

响应面设计"

序号 双氧水
质量浓度/
(g·L-1)
反应
温度/℃
氢氧化钠
质量浓度/
(g·L-1)
断裂强度/
(cN·dtex-1)
白度/
%
1 6 60 2 3.51 59.3
2 6 100 2 3.60 66.8
3 6 80 5 4.11 65.5
4 6 60 8 4.15 60.2
5 6 100 8 4.06 67.3
6 9 80 2 3.88 66.9
7 9 60 5 4.33 62.1
8 9 80 5 4.52 68.2
9 9 80 5 4.51 68.5
10 9 80 5 4.54 68.6
11 9 80 5 4.53 69.2
12 9 80 5 4.50 69.3
13 9 80 5 4.52 69.4
14 9 100 5 4.13 71.2
15 9 80 8 4.30 70.2
16 12 60 2 3.83 67.4
17 12 100 2 3.65 73.4
18 12 80 5 4.15 72.8
19 12 60 8 4.02 68.3
20 12 100 8 3.50 74.3

图7

双氧水质量浓度和反应温度对亚麻纤维断裂强度和白度的影响"

图8

双氧水质量浓度和氢氧化钠质量浓度对亚麻纤维断裂强度和白度的影响"

图9

反应温度和氢氧化钠质量浓度对亚麻纤维断裂强度和白度的影响"

图10

原麻及催化氧化与碱煮一浴处理亚麻纤维的SEM照片(×3 000)"

图11

原麻及催化氧化与碱煮一浴处理亚麻纤维的红外光谱"

图12

原麻及催化氧化与碱煮一浴处理亚麻纤维的13C NMR图"

表2

不同工艺亚麻纤维组成成分对比"

工艺 含量
脂蜡
水溶
果胶 半纤
维素
木质
纤维
灰分
原麻 1.12 2.87 3.53 17.68 3.25 70.82 0.73
工艺A 1.08 1.62 1.47 10.32 1.14 84.01 0.36
工艺B 1.09 1.85 1.56 11.45 1.30 82.36 0.39
工艺C 1.06 1.88 1.59 11.53 1.38 82.14 0.42

表3

不同工艺的处理时间和亚麻纤维性能对比"

脱胶
工艺
线密
度/
dtex
断裂
强力/
cN
断裂
强度/
(cN·dtex-1)
断裂
伸长
率/%
白度/
%
长度/
mm
反应
时间/
min
工艺A 4.33 17.54 4.05 3.69 72.42 30 190
工艺B 5.33 23.40 4.39 5.78 70.53 28 140
工艺C 4.67 19.10 4.09 4.65 70.08 27 155
[1] 张毅. 云南亚麻纤维脱胶工艺及纺纱技术研究[D]. 上海: 东华大学, 2010:4-6.
ZHANG Yi. Study on the dugumming and spinning technology of yunnan flax[D]. Shanghai: Donghua University, 2010:4-6.
[2] HUANG Jing, YU Chongwen. Determination of cellulose, hemicellulose and lignin content using near-infrared spectroscopy in flax fiber[J]. Textile Research Journal, 2019, 89(23-24): 4875-4883.
doi: 10.1177/0040517519843464
[3] 何俊, 吴丽莉, 俞建勇. 亚麻纤维精细化改性的研究[J]. 纺织学报, 2005, 26(2):99-102.
HE Jun, WU Lili, YU Jianyong. Study on the refining modification of flax[J]. Journal of Textile Research, 2005, 26(2):99-102.
[4] SHARMA H, WHITESIDE L, KERNAGHAN K. Enzymatic treatment of flax fiber at the roving stage for production of wet-spun yarn[J]. Enzyme and Microbial Technology, 2005, 37(4):386-394.
doi: 10.1016/j.enzmictec.2004.10.007
[5] 张娟, 高世会, 施楣梧, 等. 亚麻粗纱超临界二氧化碳无水煮漂技术研究进展[J]. 纺织学报, 2017, 38(5):163-169.
ZHANG Juan, GAO Shihui, SHI Meiwu, et al. Research development on scouring and bleaching of flax rove in supercritical carbon dioxide[J]. Journal of Textile Research, 2017, 38(5):163-169.
[6] MXAB C, YUN B, YLAB C, et al. An eco-friendly degumming process of flax roving without acid pickling and NaClO2-bleaching[J]. Process Biochemistry, 2020, 93:77-84.
doi: 10.1016/j.procbio.2020.03.018
[7] 吴丽莉, 陈霞, 何俊, 等. 棉纺型精细化亚麻预处理油剂[J]. 纺织学报, 2005, 26(4):89-90.
WU Lili, CHEN Xia, HE Jun, et al. Pretreatment finishing oil for refined linen in cotton system processing[J]. Journal of Textile Research, 2005, 26(4):89-90.
[8] 张文华. 精细化亚麻纤维纺纱工艺研究[D]. 上海: 东华大学, 2013:23.
ZHANG Wenhua. Study on the spinning processing of refined flax fiber[D]. Shanghai: Donghua University, 2013:23.
[9] DING Jinhua, LIANG Luna, MENG Xianzhi, et al. The physiochemical alteration of flax fibers structuring components after different scouring and bleaching treatments[J]. Industrial Crops and Products, 2020.DOI: 10.1016/j.indcrop.2020.113112.
[10] 张毅, 郁崇文. 亚麻纤维的脱胶工艺[J]. 纺织学报, 2011, 32(6):71-74.
ZHANG Yi, YU Chongwen. A novel degumming process of flax fiber[J]. Journal of Textile Research, 2011, 32(6):71-74.
[11] 高洁, 佟潇, 崔莹, 等. 高碘酸钠选择性氧化对亚麻短纤维性能的影响[J]. 印染助剂, 2019, 36(6):46-48,52.
GAO Jie, TONG Xiao, CUI Ying, et al. Effect of selective oxidation of sodium periodate on the properties of flax short fiber[J]. Textile Auxiliaries, 2019, 36(6):46-48,52.
[12] COSERI S. Phthalimide-N-oxyl (PINO) radical, a powerful catalytic agent: its generation and versatility towards various organic substrates[J]. Catalysis Reviews, 2009, 51(2):218-292.
doi: 10.1080/01614940902743841
[13] YANG Shu, YU Chongwen, ZHANG Bin, et al. Highly efficient and low pollution catalytic oxidation of ramie degumming by NHPI[J]. Industrial Crops & Products, 2022.DOI:10.1016/j.indcrop.2022.115189.
[14] 林胜利. 纤维素C6位羟基选择性氧化研究[D]. 郑州: 郑州大学, 2014:31.
LIN Shengli. Study on the selective oxidation of C6-hydroxyl group in cellulose[D]. Zhengzhou: Zhengzhou University, 2014:31.
[15] 王靖. 亚麻短纤的脱胶、漂白及柔软工艺研究[D]. 上海: 东华大学, 2007:36.
WANG Jing. Research on the technique of degumming, bleaching and softening for flax stable[D]. Shanghai: Donghua University, 2007:36.
[16] 崔莹. 亚麻短纤维的选择性氧化及其可纺性研究[D]. 齐齐哈尔: 齐齐哈尔大学, 2014:7.
CUI Ying. Study on the flax staple fiber oxidized selectively and the spinnability[D]. Qiqihar: Qiqihar University, 2014:7.
[17] MENG Chaoran, YANG Jianping, ZHANG Bin, et al. Rapid and energy-saving preparation of ramie fiber in TEMPO-mediated selective oxidation system[J]. Industrial Crops and Products, 2018. DOI:10.1016/j.indcrop.2018.09.030.
[18] 王阔. 棉织物双氧水活化剂体系的前处理工艺研究[D]. 上海: 东华大学, 2017:13.
WANG Kuo. Pretreatment processes of cotton fabric with hydrogen peroxide activated systems[D]. Shanghai: Donghua University, 2017:13.
[19] 张静, 林胜利. 纤维素选择性氧化研究进展[J]. 纤维素科学与技术, 2014, 22(2):69-77.
ZHANG Jing, LIN Shengli. The review of cellulose selective oxidation[J]. Journal of Cellulose Science and Technology, 2014, 22(2):69-77.
[20] 陈志冉, 祝丹丹. Fenton试剂氧化降解MC-LR影响因素分析[J]. 供水技术, 2011, 5(2):21-24.
CHEN Zhiran, ZHU Dandan. Influencing factors of MC-LR oxidation and degradation by Fenton method[J]. Water Technology, 2011, 5(2):21-24.
[21] 孙颖, 李端鑫, 于洋, 等. 大麻纤维的芬顿法脱胶及其性能[J]. 纺织学报, 2022, 43(8):95-100,106.
SUN Ying, LI Duanxin, YU Yang, et al. Degumming of hemp fibers using Fenton method and fiber properties[J]. Journal of Textile Research, 2022, 43(8):95-100,106.
[22] 刘芳, 马颜雪, 陈小光, 等. 苎麻纤维厌氧生物脱胶系统工艺性能研究[J]. 纺织学报, 2020, 41(11):89-94.
LIU Fang, MA Yanxue, CHEN Xiaoguang, et al. Study on process performance of ramie fiber anaerobic biological degumming system[J]. Journal of Textile Research, 2020, 41(11):89-94.
[23] 李百健, 吴超, 邵京. 柑橘皮果胶的制备及其脱色工艺[J]. 湖北农业科学, 2013, 52(23):5816-5820.
LI Baijian, WU Chao, SHAO Jing. Process of pectin extraction from orange peel and its decolorization[J]. Hubei Agricultural Sciences, 2013, 52(23):5816-5820.
[24] 屈永帅, 施朝禾, 张瑞云, 等. 蒽醌助剂对乙二醇溶剂脱胶苎麻纤维性能的影响[J]. 纺织学报, 2020, 41(11):81-88.
QU Yongshuai, SHI Zhaohe, ZHANG Ruiyun, et al. Effect of anthraquinone additive on properties of glycol solvent degummed ramie fibers[J]. Journal of Textile Research, 2020, 41(11):81-88.
[25] 何建新, 王善元. 天然纤维素的核磁共振碳谱表征[J]. 纺织学报, 2008, 29(5):1-5.
HE Jianxin, WANG Shanyuan. Characterization of native cellulose using solid-state 13C-CP/MAS NMR spectroscopy[J]. Journal of Textile Research, 2008, 29(5):1-5.
doi: 10.1177/004051755902900101
[26] 廖世波, 赖琛, 奚廷斐, 等. C6位氧化细菌纤维素的制备及结构表征[J]. 高分子材料科学与工程, 2014, 30(12):70-75.
LIAO Shibo, LAI Chen, XI Tingfei, et al. Preparation and structure characterization of C6-oxidated bacterial cellulose[J]. Polymer Materials Science and Engineering, 2014, 30(12):70-75.
[1] 程芬, 张兴群, 王云龙, 王颖. 罗布麻微生物脱胶的菌种筛选与工艺优化[J]. 纺织学报, 2022, 43(12): 82-87.
[2] 施朝禾, 秦智慧, 赵树元, 刘柳, 张瑞云, 程隆棣. 不同醇及助剂对大麻有机溶剂脱胶效果的影响[J]. 纺织学报, 2022, 43(10): 77-82.
[3] 孙颖, 李端鑫, 于洋, 陈嘉琳, 范皖月. 大麻纤维的芬顿法脱胶及其性能[J]. 纺织学报, 2022, 43(08): 95-100.
[4] 李艾元, 施心雨, 岳万福, 游卫云. 丝素蛋白水凝胶支架的制备及其性能[J]. 纺织学报, 2022, 43(06): 44-48.
[5] 何俊燕, 李明福, 连文伟, 黄涛, 张劲. 菠萝叶纤维的超声波辅助化学脱胶工艺[J]. 纺织学报, 2021, 42(09): 83-89.
[6] 张帆, 张国波, 赵宇新, 张儒, 阳海, 王世豪, 汪南方. 催化氧化皂洗在涤纶/棉织物一浴染色中的应用[J]. 纺织学报, 2021, 42(09): 97-103.
[7] 武守营, 张琳萍, 徐红, 钟毅, 毛志平. 金属配合物催化棉织物低温漂白研究进展[J]. 纺织学报, 2021, 42(03): 27-35.
[8] 刘丽宾, 吕汪洋, 陈文兴. 棉针织物漂白中铜配合物催化降解木质素及其模型化合物[J]. 纺织学报, 2021, 42(03): 1-8.
[9] 张滕家璐, 吴伟, 钟毅, 毛志平, 徐红. 平幅前处理对棉针织物染色性能的影响[J]. 纺织学报, 2021, 42(03): 9-13.
[10] 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52.
[11] 刘芳, 马颜雪, 陈小光, 刘书惠, 张益榛, 任志鹏, 李康琪, 童艺翾, 任泺彤, 李毓陵. 苎麻纤维厌氧生物脱胶系统工艺性能研究[J]. 纺织学报, 2020, 41(11): 89-94.
[12] 屈永帅, 施朝禾, 张瑞云, 赵树元, 刘柳. 蒽醌助剂对乙二醇溶剂脱胶苎麻纤维性能的影响[J]. 纺织学报, 2020, 41(11): 81-88.
[13] 张娟, 郑环达, 乔燕, 高世会, 郑来久. 亚麻粗纱的超临界CO2煮漂工艺[J]. 纺织学报, 2020, 41(07): 93-101.
[14] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[15] 陈冬芝, 杨晓刚, 陈艳霞, 刘琳, 陈彬, 崔科丛, 张勇. 亚麻废纱制备纤维素基絮凝材料及其混凝工业废水性能[J]. 纺织学报, 2020, 41(01): 88-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!