纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 142-150.doi: 10.13475/j.fzxb.20221104201
SHAO Mingjun, JIAN Yulan, TANG Wei, CHAI Xijuan, WAN Hui, XIE Linkun()
摘要:
针对超疏水织物的整理工艺相对复杂且常用含氟化合物有毒的问题,将甲基三甲氧基硅烷(MTMS)、氨水和无水乙醇以体积比为3∶50∶50混合后常温水解,采用浸渍法一步制备了耐久性超疏水涤纶织物。探讨了水解时间对织物表面润湿性及形貌的影响,对整理后织物的表观形貌、化学结构与元素组成、润湿性、断裂强力及涂层的稳定性和耐久性等进行分析与表征。结果表明:当水解时间为120 min整理的涤纶织物具有超疏水性,其静态水接触角为(150.6±0.9)°,滚动角为9°;与未整理涤纶织物相比,超疏水涤纶织物经向、纬向的抗拉强度分别提高了8.31%和11.61%,且经600 min超声波洗涤、10 000次摩擦测试、24 h酸碱溶液浸泡及24 h紫外光老化测试后仍然保持超疏水性,具有较好的力学稳定性和环境耐久性;水解时间为90~210 min整理的涤纶织物,经5次水油分离循环测试其分离效率均在97.0%以上。该方法及工艺绿色高效,所制备的涤纶织物在水油分离、水体净化等领域具有潜在的应用前景和价值。
中图分类号:
[1] | KONG X W, ZHU C X, LV J, et al. Robust fluorine-free superhydrophobic coating on polyester fabrics by spraying commercial adhesive and hyodrophobic fumed SiO2 nanoparticles[J]. Progress in Organic Coatings, 2020. DOI: 10.1016/j.porgcoat.2019.105342. |
[2] | 闫德峰, 刘子艾, 潘维浩, 等. 多功能超疏水表面的制造和应用研究现状[J]. 表面技术, 2021, 50(5): 1-19. |
YAN Defeng, LIU Ziai, PAN Weihao, et al. Research status on the fabrication and application of multifunctional superhydrophobic surfaces[J]. Surface Technology, 2021, 50(5): 1-19. | |
[3] | 闫征, 王立新, 潘盼. 水黾仿生特性与工程应用研究进展[J]. 河北科技大学学报, 2020, 41(3): 210-217. |
YAN Zheng, WANG Lixin, PAN Pan. Research progress of water stride in bionic characteristic and engineering application[J]. Journal of Hebei University of Science and Technology, 2020, 41(3): 210-217. | |
[4] | 王发鹏, 朱俊, 金满洁, 等. 基于玫瑰花瓣褶皱微表面特性仿生构筑疏水竹材的研究[J]. 世界竹藤通讯, 2019, 17(3): 22-25. |
WANG Fapeng, ZHU Jun, JIN Manjie, et al. A study of bio-prepared hydrophobic bamboo based on fold microsurface characteristics of rose petals[J]. World Bamboo and Rattan, 2019, 17(3): 22-25. | |
[5] | 李晶, 赵世才, 李强, 等. 类水稻叶多尺度表面构筑与各向疏水性[J]. 科学通报, 2017, 62(16): 1766-1773. |
LI Jing, ZHAO Shicai, LI Qiang, et al. Fabrication of biomimetic multi-scale surface of rice leaf and anisotropic superhydrophobic properties[J]. Chinese Science Bulletin, 2017, 62(16): 1766-1773. | |
[6] | 郭方舒, 张春明. 利用常压低温等离子体制备无氟超疏水棉织物[J]. 棉纺织技术, 2021, 49(8): 1-4. |
GUO Fangshu, ZHANG Chunming. Fluorine-free super-hydrophobic cotton fabric prepared by low temperature plasma at atmospheric pressure[J]. Cotton Textile Technology, 2021, 49(8): 1-4. | |
[7] | PAKDEL E, ZHAO H, WANG J F, et al. Superhydrophobic and photocatalytic self-cleaning cotton fabric using flower-like N-doped TiO2/PDMS coating[J]. Cellulose, 2021, 28: 8807-8820. |
[8] | CHEN L, WU F, LI Y L, et al. Robust and elastic superhydrophobic breathable fibrous membrane with in situ grown hierarchical structures[J]. Journal of Membrane Science, 2017, 547: 93-98. |
[9] | MONDAL S, PAL S, CHAUDHURI A, et al. Fluoropolymer adhered bioinspired hydrophobic, chemically durable cotton fabric for dense liquid removal and self-cleaning application[J]. Surface Engineering, 2020, 37: 1-9. |
[10] | 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(8): 109-114. |
LI Weibin, ZHANG Cheng, LIU Jun. Preparation of superhydrophobic coated cotton fabrics for oil-water separation[J]. Journal of Textile Research, 2021, 42(8): 109-114. | |
[11] | TUDU B K, KUMAR A, BHUSHAN B. Fabrication of superoleophobic cotton fabric for multi-purpose applications[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019. DOI: 10.1098/rsta.2019.0129. |
[12] | LIU X L, GU Y C, MI T F, et al. Dip-coating approach to fabricate durable PDMS/STA/SiO2 superhydrophobic polyester fabrics[J]. Coatings, 2021. DOI: 10.3390/coatings11030326. |
[13] | HUANG J D, LI M M, REN C Y, et al. Preparation of high-efficiency flame-retardant and superhydrophobic cotton fabric by a multi-step dipping[J]. Coatings, 2021. DOI: 10.3390/coatings11101147. |
[14] | COSTELLO E, ROCK S, STRATAKIS N, et al. Exposure to per- and polyfluoroalkyl substances and markers of liver injury: a systematic review and meta-analysis[J]. Environmental Health Perspectives, 2022. DOI: 10.1289/ehp10092. |
[15] | LI J Y, WANG L, ZHANG X, et al. Per- and polyfluoroalkyl substances exposure and its influence on the intestinal barrier: an overview on the advances[J]. Science of the Total Environment, 2022. DOI: 10.1016/j.scitotenv.2022.158362. |
[16] |
ZAHID M, MAZZON G, ATHANASSIOU A, et al. Environmentally benign non-wettable textile treatments: a review of recent state-of-the-art[J]. Advances in Colloid and Interface Science, 2019, 270: 216-250.
doi: S0001-8686(19)30080-6 pmid: 31277037 |
[17] | OU J F, WANG F J, LI W, et al. Methyltrimethoxysilane as a multipurpose chemical for durable superhydrophobic cotton fabric[J]. Progress in Organic Coatings, 2020. DOI: 10.1016/j.porgcoat.2020.105700. |
[18] | CAI Z W, LIN J B, HONG X L. Transparent superhydrophobic hollow films (TSHFs) with superior thermal stability and moisture resistance[J]. RSC Advances, 2018, 8(1): 491-498. |
[19] | 路少伟, 蹇玉兰, 三福华, 等. 楠竹材表面硅烷化及防水/油润湿和渗透的特性[J]. 表面技术, 2022, 51(8): 443-451, 459. |
LU Shaowei, JIAN Yulan, SAN Fuhua, et al. Silylation of moso bamboo (phyllostachys edulis) surface and preventable wettability and penetration for water and oil[J]. Surface Technology, 2022, 51(8): 443-451, 459. | |
[20] | 黄江江, 王冠, 谢光荣, 等. 甲基三甲氧基硅烷水解液pH值对无铬锌铝涂层耐蚀性能的影响[J]. 材料保护, 2018, 51(7): 68-71, 103. |
HUANG Jiangjiang, WANG Guan, XIE Guangrong, et al. Effect of pH value of methyltrimethoxysilane hydrolysate on corrosion resistance of chromium-free Zn-Al coating[J]. Materials Protection, 2018, 51(7): 68-71, 103. | |
[21] | HAN C L, TANG T Y, DENG J, et al. Quantitative determination of base-catalyzed hydrolysis kinetics of methyltrimethoxysilane by in-situ raman spectro-scopy[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.136889. |
[22] | VERBIČ A, BRENČIČ K, PRIMC G. et al. Eco-friendly in situ ZnO synthesis on PET fabric using oxygen plasma and plant waste[J]. Coatings, 2022. DOI: 10.3390/coatings12040537. |
[23] | ROHITH K R, VINOD P, MARCELA Š. Hierarchically porous bio-based sustainable conjugate sponge for highly selective oil/organic solvent absorption[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202100640. |
[24] | 蒲泽佳, 侯建硕, 陈迎春, 等. 涤纶织物的有机硅改性硅溶胶超疏水整理[J]. 印染, 2015, 41(20): 1-4, 9. |
PU Zejia, HOU Jianshuo, CHEN Yingchun, et al. Super hydrophobic finishing of polyester with organic silicon modified silica sol[J]. China Dyeing & Finishing, 2015, 41(20): 1-4, 9. | |
[25] | XU L H, LIU Y D, YUAN X L, et al. One-pot preparation of robust, ultraviolet-proof superhydrophobic cotton fabrics for self-cleaning and oil/water separa-tion[J]. Cellulose, 2020, 27: 9005-9026. |
[26] | LIN H S, ROSU C, JIANG L, et al. Non-fluorinated superhydrophobic chemical coatings on polyester fabric prepared with kinetically-controlled hydrolyzed methyltrimethoxysilane[J]. Industrial and Engineering Chemistry Research, 2019, 58(33): 15368-15378. |
[27] | 邵灵达, 申晓, 金肖克, 等. 涤纶纤维表面复合改性对其亲水性的影响[J]. 丝绸, 2020, 57(2): 19-24. |
SHAO Lingda, SHEN Xiao, JIN Xiaoke, et al. Effect of surface modification of polyester fiber on its proper-ties[J]. Journal of Silk, 2020, 57(2): 19-24. | |
[28] |
XIE A L, WANG B A, CHEN X P, et al. Facile fabrication of superhydrophobic polyester fabric based on rapid oxidation polymerization of dopamine for oil-water separation[J]. RSC Advances, 2021, 11: 26992-27002.
doi: 10.1039/d1ra05167a pmid: 35480020 |
[29] |
ROSU C, LIN H S, LU J, et al. Sustainable and long-time 'rejuvenation' of biomimetic water-repellent silica coating on polyester fabrics induced by rough mechanical abrasion[J]. Journal of Colloid and Interface Science, 2018, 516: 202-214.
doi: S0021-9797(18)30063-8 pmid: 29408106 |
[30] | BRINKER C. Hydrolysis and condensation of silicates: effects on structure[J]. Journal of Non-Crystalline Solids, 1988, 100(1): 31-50. |
[1] | 王露砚, 张彩宁, 赵倩倩, 马志豪, 王煦漫. 紫外光/氨气双重响应超疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 160-166. |
[2] | 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25. |
[3] | 张典典, 李敏, 关玉, 王思翔, 胡桓川, 付少海. 仿植被可见光-近红外反射光谱特征的分散染料印花织物制备及其性能[J]. 纺织学报, 2023, 44(01): 142-148. |
[4] | 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117. |
[5] | 梅敏, 钱建华, 周榆凯, 杨晶晶. 纳米SiO2/含氟硅防水透湿整理剂的制备及其应用[J]. 纺织学报, 2022, 43(12): 118-124. |
[6] | 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189. |
[7] | 乔路阳, 吕巧莉, 胡乾恒, 王成龙, 郑今欢. 改性羰基铁粉制备及其在蓝光固化磁控超疏水薄膜中的应用[J]. 纺织学报, 2022, 43(12): 88-95. |
[8] | 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118. |
[9] | 高强, 范浩军, 颜俊, 陈玉国, 郑萍. 三维超疏水超细纤维绒面革的仿生构建[J]. 纺织学报, 2022, 43(10): 126-132. |
[10] | 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112. |
[11] | 薛宝霞, 史依然, 张凤, 秦瑞红, 牛梅. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(05): 130-135. |
[12] | 王艳萍, 陈晓倩, 夏伟, 傅佳佳, 高卫东, 王鸿博, ARTUR Cavaco-Paulo. 角质酶在涤纶织物表面改性中的应用[J]. 纺织学报, 2022, 43(05): 136-142. |
[13] | 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109. |
[14] | 何颖婷, 李敏, 王瑞丰, 王春霞, 付少海. 涤纶织物的连续式轧染工艺[J]. 纺织学报, 2022, 43(03): 110-115. |
[15] | 谢爱玲, 乐昱含, 艾馨, 王亚辉, 王义容, 陈新彭, 陈国强, 邢铁玲. 茶多酚改性超疏水涤纶织物制备及其在油水分离中的应用[J]. 纺织学报, 2022, 43(02): 162-170. |
|