纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 180-187.doi: 10.13475/j.fzxb.20230405301

• 服装工程 • 上一篇    下一篇

基于空间向量模长的青年女性腰腹臀部形态分类与判别

吴金颖1, 李炘1, 丁笑君1,2,3, 邱文池1, 邹奉元1,2,3()   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 311199
    2.浙江省服装工程技术研究中心, 浙江 杭州 311199
    3.丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室, 浙江 杭州 311199
  • 收稿日期:2023-04-26 修回日期:2023-09-13 出版日期:2024-04-15 发布日期:2024-05-13
  • 通讯作者: 邹奉元(1962—),男,教授,硕士。主要研究方向为服装数字化技术。E-mail:zfy166@zstu.edu.cn。
  • 作者简介:吴金颖(1998—),女,硕士生。主要研究方向为人体工程与服装数字化技术。
  • 基金资助:
    文化和旅游部重点实验室开放基金项目(2020WLB09);国家级大学生创新创业训练计划项目(202210338032)

Classification and discrimination of waist-abdomen-hip morphology of young women based on space vector length

WU Jinying1, LI Xin1, DING Xiaojun1,2,3, QIU Wenchi1, ZOU Fengyuan1,2,3()   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 311199, China
    2. Clothing Engineering Research Center of Zhejiang Province, Hangzhou, Zhejiang 311199, China
    3. Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou, Zhejiang 311199, China
  • Received:2023-04-26 Revised:2023-09-13 Published:2024-04-15 Online:2024-05-13

摘要:

为实现女体三维曲面的分类与判别,提高裤装的合体性,提出一种基于空间向量模长表征腰腹臀部形态并进行体型分类的方法。获取323名18~25岁青年女性的三维点云数据,提取腰腹臀部10层横截面曲线,以臀围质心为原点重建点云坐标系,通过欧式距离计算130个特征点的空间向量模长,构建表征人体曲面形态的模长矩阵。引入拉普拉斯特征映射降维获取18个本征维度,采用K-means聚类,运用随机森林算法建立青年女性腰腹臀部形态的判别模型。结果表明,青年女性腰腹臀部可分为大众型、扁平型、腹凸型、臀凸型4类,分别占样本总数的58.82%、27.86%、8.36%和4.95%。分析获得4类体型对应的裤装样板差异,有效提高了裤装合体性,青年女性腰腹臀部形态判别准确率达96.92%。

关键词: 青年女性, 腰腹臀部形态, 空间向量模长, 体型分类, 合体性, 服装

Abstract:

Objective The current research on body shape uses classification indexes for body shape such as circumference, width, thickness, ratio and angle, which are not able to fully reflect the curved shape of body. In order to establish classification and discrimination of three-dimensional surfaces of female body and improve the fit of pants, a method of body shape classification based on space vector length characterization of waist-abdomen-hip morphology is proposed.

Method The 3-D point cloud data of 323 young women aged 18-25 years were collected by TC2 3D scanner, and the 10-layer cross-sectional curves of the waist-abdomen-hip were extracted. The center of mass of hip circumference was used as the origin to reconstruct the point cloud coordinate system. The space vector length of 130 feature points was calculated by Euclidean distance to construct the modulus length matrix to characterize the morphology of body surface. The eigen dimension was determined by using maximum likelihood estimation, and Laplace feature mapping was introduced. The body type segmentation based on space vector length was achieved by K-means clustering. The discriminative model of waist-abdomen-hip morphology of young women was established by random forest algorithm. The garment samples (SVP) corresponding to four types under size 160/66A were obtained and compared with the basic women's suit pants benchmark sample (BTP) to evaluate their fit.

Results Based on the 3-D point cloud data, 10 feature cross-sections reflecting the morphology of the waist-abdomen-hip surfaces were extracted, and 130 feature points were extracted. A modal length matrix of 323 samples, each with 130 space vector lengths was constructed. The maximum likelihood estimation was used to determine the eigen dimension as 18. The modal length matrix 323 18 characterizing the body surface morphology was obtained by dimensionality reduction. The elbow method was used to determine the number of clusters as 4. Through cluster analysis, the waist-abdomen-hip of young women were subdivided into four types by combining the national standard body type, i.e., mass, flat, convex abdomen and convex hip, which accounted for 58.82%, 27.86%, 8.36% and 4.95% of the total number of samples respectively. In order to perform the discrimination test for the independence of different body types, a discriminative model of waist-abdomen-hip morphology of young women was established with a decision tree number of 100, a classification number of 4, a training and testing sample of 8∶2. The model was continuously trained by Random Forest(RF) algorithm, and the discrimination accuracy reached 96.92%. Using the virtual fitting, it can be seen that the SVP sample pants are blue and green areas at the waist and crotch. The garment stretch is between 100%-110% in a normal stretch state, with moderate dressing pressure and a good garment fit. Through virtual fitting and physical verification, the fit of SVP sample pants became better than that of BTP sample pants.

Conclusion The space vector length is used as a classification index to characterize the surface morphology of the waist-abdomen-hip of young women and to perform body type segmentation to achieve the classification and discrimination of female body 3-D surface. The discrimination test of the independence of different body types shows that the four types classified by the space vector length as the index show strong independence. Through virtual validation and physical validation, it is shown that the body type classification method based on space vector length has a good effect on improving the fit of pants. The application of this method can effectively facilitate the body type segmentation and further improve the matching degree of clothing and human body, which can be applied to the scale customization of garment.

Key words: young women, waist-abdomen-hip, space vector length, body type classification, suitability, clothing

中图分类号: 

  • TS941.17

图1

腰腹臀部特征截面"

表1

10层截面的定义"

截面符号 名称 定义
a 腰围线(WL) 髂骨线上缘线高4 cm左右最细
处围度线
b~e 腰臀等分线 在腰围线与臀围线之间等距选取
4条特征线
f 臀围线(HL) 人体臀部后方最凸点水平线
g~i 臀腿等分线 在臀围线与大腿围线之间等距选取
3条特征线
j 大腿围线(CL) 人体躯干点云数据高度值z最小值
所在截面

图2

数据预处理"

图3

空间向量模长"

表2

腰腹臀部体型细分"

国标
体型
Ⅰ类 Ⅱ类 Ⅲ类 Ⅳ类 合计
样本量 占比/% 样本量 占比/% 样本量 占比/% 样本量 占比/% 样本量 占比/%
Y 17 5.26 13 4.02 0 0.00 1 0.31 31 9.60
A 98 30.34 39 12.07 15 4.64 7 2.17 159 49.23
B 71 21.98 38 11.76 12 3.72 8 2.48 129 39.94
C 4 1.24 0 0.00 0 0.00 0 0.00 4 1.24
合计 190 58.82 90 27.86 27 8.36 16 4.95 323 100.00

图4

手肘法确定最佳聚类数"

图5

A体型下4类体型部分尺寸比较"

图6

4类体型腰腹臀部正面与侧面形态"

图7

基准样板和4类体型样板"

图8

4类体型腰腹臀部叠加图"

图9

不同决策树数目下的准确率"

图10

RF算法下体型预测结果"

图11

大众体型虚拟试衣"

图12

样衣试穿效果"

图13

大众体型色谱偏差分析"

[1] LI Peng, CORNER Brian, PAQUETTE Steven. Shape analysis of female torsos based on discrete cosine transform[J]. International Journal of Clothing Science and Technology, 2015, 27(5): 677-91.
[2] LI Xihang, LI Guiqin, LI Tiancai, et al. Design of a multi-sensor information acquisition system for mannequin reconstruction and human body size measurement under clothes[J]. Textile Research Journal, 2022, 92(19): 3750-65.
[3] 王军, 李晓久, 潘力, 等. 东北地区青年女性腰臀部体型特征与分类[J]. 纺织学报, 2018, 39(4): 106-10.
WANG Jun, LI Xiaojiu, PAN Li, et al. Waist hip somatotype and classification of young women in Northeast China[J]. Journal of Textile Research, 2018, 39(4): 106-110.
[4] 陈希雅, 赵颖, 蔡晓裕, 等. 基于局部特征的青年女性腿部形态分类[J]. 纺织学报, 2020, 41(1): 136-42.
CHEN Xiya, ZHAO Ying, CAI Xiaoyu, et al. Leg classification for young women based on leg shape characteristics[J]. Journal of Textile Research, 2020, 41(11): 136-142.
doi: 10.13475/j.fzxb.20190904407
[5] WANG Jun, LI Xiaojiu, PAN Li, et al. Parametric 3D modeling of young women's lower bodies based on shape classification[J]. International Journal of Industrial Ergonomics, 2021(84): 103-142.
[6] 王祺明. 基于人体三围截面面积的江浙地区女性体型分类[J]. 纺织学报, 2016, 37(5): 131-135.
WANG Qiming. Female body classification in Jiangsu and Zhejiang based oncross-sectional area of body[J]. Journal of Textile Research, 2016, 37(5): 131-135.
[7] 金娟凤, 庞程方, 陈伟杰, 等. 青年男性肩点横截面曲线及其体型细分[J]. 纺织学报, 2016, 37(8): 101-106.
JIN Juanfeng, PANG Chengfang, CHEN Weijie, et al. Study on subdivision of young male's shoulder shapes and cross-section curve[J]. Journal of Textile Research, 2016, 37(8): 101-106.
[8] PEI Jie, PARK Huiju, ASHDOWN Susan P. Female breast shape categorization based on analysis of CAESAR 3D body scan data[J]. Textile Research Journal, 2019, 89(4): 590-611.
doi: 10.1177/0040517517753633
[9] YOON Mi Kyung, NAM Yun Ja, KIM Woong. Classifying male upper lateral somatotypes using space vectors[J]. International Journal of Clothing Science and Technology, 2016, 28(1): 115-29.
[10] SUN Jie, CAI Qianyun, LI Tao, et al. Body shape classification and block optimization based on space vector length[J]. International Journal of Clothing Science and Technology, 2019, 31(1): 115-29.
[11] YU Minji, KIM Dong Eun. Body shape classification of Korean middle-aged women using 3D anthropometry[J]. Fashion and Textiles, 2020, 7(1):1-26.
[12] HLAING Ei Chaw, KRZYWINSKI Sybille, ROEDEL Hartmut. Garment prototyping based on scalable virtual female bodies[J]. International Journal of Clothing Science and Technology, 2013, 25(3): 184-97.
[13] BELKIN Mikhail, NIYOGI Partha. Towards a theoretical foundation for Laplacian-based manifold methods[J]. Journal of Computer and System Sciences, 2008, 74(8): 1289-308.
[14] 章永红, 郭杨红, 阎玉秀. 女装结构设计(上)[M]. 2版. 杭州: 浙江大学出版社, 2021: 230.
ZHANG Yonghong, GUO Yanghong, YAN Yuxiu. Pattern Making for lady's wear design(Ⅰ)[M]. 2nd ed. Hangzhou: Zhejiang University Press, 2021: 230.
[15] 尹玲, 夏蕾, 许才国. 基于随机森林的女性体型判别[J]. 纺织学报, 2014, 35(5): 113-117.
YIN Ling, XIA Lei, XU Caiguo. Female body shape prediction based on random forest[J]. Journal of Textile Research, 2014, 35(5): 113-117.
[16] 刘为敏, 谢红. BP神经网络下的智能化合体服装样板生成[J]. 纺织学报, 2018, 39: 116-21.
doi: 10.13475/j.fzxb.20170901006
LIU Weimin, XIE Hong. Generation of intelligent fitting pattern based on BP neural network[J]. Journal of Textile Research, 2018, 39: 116-21.
doi: 10.13475/j.fzxb.20170901006
[17] WU Runyu, LIU Zhengdong. Research on improving garment fit through CLO 3D modeling[C]// 2022 International Seminar on Computer Science and Engineer-ing Technology(SCSET). USA: Institute of Electrical and Electronics Engineers, 2022: 204-207.
[18] CHI Cheng, ZENG Xianyi, BRUNIAUX Pascal, et al. A study on segmentation and refinement of key human body parts by integrating manual measure ments[J]. Ergonomics, 2022, 65(1): 60-77.
[19] 王诗潭, 汪秀花, 王云仪. 连体服衣下间隙特征指标的确定及其在服装合体性评价中的应用[J]. 纺织学报, 2021, 42(9): 137-143.
WANG Shitan, WANG Xiuhua, WANG Yunyi. Determi-nation and application of air gap parameters in coverall fit analysis[J]. Journal of Textile Research, 2021, 42(9):137-143.
[1] 郑小虎, 刘正好, 刘冰, 张洁, 徐修亮, 刘希. 面向平缝工艺信息融合的知识图谱构建方法[J]. 纺织学报, 2024, 45(04): 195-203.
[2] 王宇娴, 魏孟媛, 薛文良, 马颜雪. 童装质量检验不合格项的关联规则研究[J]. 纺织学报, 2024, 45(04): 204-210.
[3] 朱圆圆, 覃蕊, 金佳勤, 雷彧腾, 于淼. 基于ANSYS的人体下肢服装压虚拟仿真预测[J]. 纺织学报, 2024, 45(03): 148-155.
[4] 王馨雨, 田明伟. 具有距离监测与辅助提示功能的自闭症儿童智能服装设计[J]. 纺织学报, 2024, 45(03): 156-162.
[5] 杨光, 杨小兵, 栗丽, 姚之凤, 周川, 张明明. 新修定的化学防护服国家标准解析[J]. 纺织学报, 2024, 45(03): 163-168.
[6] 童锡宇, 郑路, 杨金昌, 胡觉亮, 韩曙光. 基于服装吊挂系统协同的车间混合流水线布局优化[J]. 纺织学报, 2024, 45(03): 169-176.
[7] 何崟, 邓凌, 林美霞, 李倩倩, 肖爽, 刘皓, 刘莉. 冬季运动智能柔性人台关键技术开发[J]. 纺织学报, 2024, 45(02): 221-230.
[8] 杜培研, 陈敬玉, 张晓夏. 身材认知在服装分割设计中的感性工学应用[J]. 纺织学报, 2024, 45(02): 231-237.
[9] 吴冬雪, 刘让同, 于媛媛, 李淑静, 韩赟. 下肢运动状态特征对裤装臀围的影响分析[J]. 纺织学报, 2024, 45(01): 168-175.
[10] 韩燕娜, 江翼成, 郑霞, 杨子田. 情绪在小生褶子设计要素和语义评价间的中介作用[J]. 纺织学报, 2024, 45(01): 185-193.
[11] 周莉, 樊培宏, 金玉婷, 张龙琳, 李新荣. 服装逆向造型的数字化设计方法[J]. 纺织学报, 2023, 44(12): 138-144.
[12] 刘雨婷, 宋泽涛, 赵胜男, 王星岚, 常素芹. 个体冷却服的研究现状与发展趋势[J]. 纺织学报, 2023, 44(12): 233-241.
[13] 苗雪, 王永进, 王方明. 充气保暖复合面料厚度与热阻的相关性分析[J]. 纺织学报, 2023, 44(11): 176-182.
[14] 杨钰蝶, 李承璋, 金剑, 郑晶晶. 基于上肢活动性的灭火防护服背带的设计与评价[J]. 纺织学报, 2023, 44(11): 183-189.
[15] 张俊, 胡嵩, 童梦霞, 肖文陵. 感性工学在纺织服装领域的研究进展[J]. 纺织学报, 2023, 44(11): 240-249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!