纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 24-32.doi: 10.13475/j.fzxb.20231002001

• 纺织科技新见解学术沙龙专栏:绿色功能与智能纺织品 • 上一篇    下一篇

载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用

宋贝贝1,2, 赵浩阅1,2, 李欣宇1,2, 屈展1,2, 方剑1,2()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
    2.苏州大学 现代丝绸国家工程实验室, 江苏 苏州 215123
  • 收稿日期:2023-10-19 修回日期:2024-01-11 出版日期:2024-04-15 发布日期:2024-05-13
  • 通讯作者: 方剑(1980—),男,教授,博士。研究方向为电活性纤维材料和智能可穿戴纺织品。E-mail:jian.fang@suda.edu.cn。
  • 作者简介:宋贝贝(1996—),女,硕士生。主要研究方向为纳米纤维在锂硫电池中的应用。
  • 基金资助:
    国家自然科学基金面上项目(52173059);江苏省高校自然科学研究项目(21KJA540002)

Application of MXene-loaded cobalt-nitrogen doped carbon nanofibers in lithium-sulfur batteries

SONG Beibei1,2, ZHAO Haoyue1,2, LI Xinyu1,2, QU Zhan1,2, FANG Jian1,2()   

  1. 1. College of Textiles and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2023-10-19 Revised:2024-01-11 Published:2024-04-15 Online:2024-05-13

摘要:

为缓解锂硫电池中多硫化物的穿梭效应,在钴氮掺杂纳米纤维中引入MXene纳米片,利用静电纺丝与高温炭化技术,制备了载有MXene纳米片的钴氮掺杂碳纳米纤维(MX-Co/N-PCNFs),并将其作为锂硫电池中间层,探讨了MX-Co/N-PCNFs中间层的形貌结构和MXene的添加对于多硫化物的吸附以及电池电化学性能的影响。结果表明:当MXene分散液质量浓度为90 mg/mL,炭化温度为800 ℃时,得到的MX-Co/N-PCNFs比表面积为257.5 m2/g;将其作为中间层组装的电池,在0.2 C倍率下,循环100圈后,仍具有971.5 mA·h/g的容量;1 C倍率长循环400圈后,每圈容量衰减仅为0.063%;在高硫负载(4 mg/cm2)、0.5 C下循环50圈后,容量仍保持在853 mA·h/g,优于不添加MXene纳米片的中间层。

关键词: 静电纺丝, 碳纳米纤维, 中间层, MXene, 锂硫电池

Abstract:

Objective With its high theoretical specific capacity and high energy density, lithium-sulfur batteries stand out from many energy storage systems. However, the shuttle effect of polysulfides and the slow redox reaction kinetics are serious challenges in the development of lithium-sulfur batteries. Therefore, the adsorption limiting polysulfide and the catalytic conversion of polysulfide have become the research focus of lithium sulfur batteries. Functional interlayers can be endowed with high electrical conductivity, strong adsorption and catalytic capabilities, so interlayer insertion is a simple and effective strategy. The electrospun carbon nanofiber network has a three-dimensional porous structure, which can effectively intercept polysulfide and promote electron conduction inside the battery. In order to enhance the interaction between the material and polysulfide and catalyze its transformation, the introduction of functional material MXene is to be explored in this research.

Method Using polyacrylonitrile (PAN) as carbon source, 1, 10-Philolin as nitrogen source, polymethyl methacrylate (PMMA) as pore-making agent, cobalt acetate tetrahydrate as cobalt source and MXene as functional material, electrostatic spinning nanofibers were prepared. After pre-oxidation and high temperature carbonization under specific conditions, flexible self-supporting carbon nanofiber interlayer (MX-Co/N-PCNFs) embedded with cobalt single atom was obtained.

Results The morphology, structure, and impact of MXene addition on the adsorption of polysulfides and electrochemical performance were studied. After 180 degrees of twisting and bending, the surface of the sample showed no cracks and damage, and demonstrated excellent flexibility. The test results show that the total XPS spectrum analysis and peak fitting confirmed the introduction of MXene and the doping of cobalt nitrogen, and that the high degree of graphitization of the sample could be seen through the analysis of Raman spectrum. The specific surface area of MX-Co/N-PCNFs was 257.5 m2/g when the concentration of MXene dispersion was 90 mg/mL and the carbonization temperature was 800 ℃. The dynamic and static adsorption of sulfur proved that MX-Co/N-PCNFs intermediate layer achieved both physical and chemical adsorption to limit the shuttle effect of polysulfide, and also showed that it had the best catalytic activity. By testing the cyclic voltammetry curve (CV), the potential difference between the oxidation peak and the reduction peak of the MX-Co/N-PCNFs intermediate layer was 0.27 V respectively, which proved that it had a small polarization and a strong redox reaction kinetics. It is used as a polar plate and assembled into a symmetrical battery to characterize the liquid-liquid conversion process between liquid sulfur species. At a sweep speed of 50 mV/s, MX-Co/N-PCNFs based symmetric cells exhibit excellent REDOX current response among the three, indicating significant catalytic performance in liquid-liquid conversion processes. The electrochemical impedance spectroscopy results showed that the introduction of MXene nanosheets further promoted the conductivity and wettability of the middle layer of cobalt-nitrogen doped carbon nanofibers, resulting a very small interface impedance and charge transfer impedance. The battery assembled with MX-Co/N-PCNFs as the interlayer showed a capacity of 971.5 mA·h/g after 100 cycles at 0.2 C. The capacity decay was only 0.063% after 400 cycles at 1 C, and the capacity was still 853 mA·h/g after 50 cycles at 0.5 C with high sulfur loading (4 mg/cm2), which was better than that of the interlayer without the addition of MXene nanosheets.

Conclusion MXene was added to the middle layer of nitrogen-doped carbon nanofibers embedded with cobalt single atom. Through electrochemical comparison, it is confirmed that MXene could improve the electrochemical and electrocatalytic properties of porous electrostatic spinning carbon nanofibers, promote the adsorption and catalytic conversion of polysulfide in lithium-sulfur batteries, and improve the energy density of the positive electrode. The inclusion of non-active materials in the binder is avoided, and the influence on the energy density of the lithium-sulfur battery is reduced.

Key words: electrospinning, carbon nanofiber, interlayer, MXene, lithium-sulfur battery

中图分类号: 

  • TS101.3

图1

柔性MX-Co/N-PCNFs中间层弯折前后照片"

图2

3种不同中间层的微观形貌"

图3

MX-Co/N-PCNFs的拉曼光谱图"

图4

MX-Co/N-PCNFs的X射线衍射图"

图5

MX-Co/N-PCNFs的XPS谱图"

图6

MX-Co/N-PCNFs的比表面积分析"

图7

不同中间层在Li2S6溶液中的动态吸附效果"

图8

不同中间层材料的静态吸附图"

图9

含有3种不同中间层电池的CV曲线对比"

图10

对称电池在50 mV/s扫描速度下的CV曲线"

图11

电化学阻抗谱"

图12

1 C长循环下的循环性能"

图13

高硫负载(4 mg/cm2)0.5 C倍率下的循环性能"

图14

不同倍率下循环性能"

图15

低硫负载0.5 C下循环100圈后的电池内部隔膜负极形貌"

[1] YAO Weiqi, ZHENG Weizhong, XU Jie, et al. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries[J]. ACS Nano, 2021, 15 (4): 7114-7130.
doi: 10.1021/acsnano.1c00270 pmid: 33764730
[2] WANG Junling, CAI Wei, MU Xiaowei, et al. Designing of multifunctional and flame retardant separator towards safer high-performance lithium-sulfur batteries[J]. Nano Research, 2021, 14 (12): 4865-4877.
[3] EVERS Scott, NAZAR Linda F. New approaches for high energy density lithium-sulfur battery cathodes[J]. Accounts of Chemical Research, 2013, 46 (5): 1135-1143.
doi: 10.1021/ar3001348 pmid: 23054430
[4] CHENG Xinbing, HUANG Jiaqi, ZHANG Qiang. Review: Li metal anode in working lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2018, 165 (1): 6058-6072.
doi: 10.1149/2.0111801jes
[5] HE Xiangming, REN Jianguo, WANG Li, et al. Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries[J]. Journal of Power Sources, 2009, 190 (1): 154-156.
[6] WANG Tianyi, KRETSCHMER Katja, CHOI Sinho, et al. Fabrication methods of porous carbon materials and separator membranes for lithium-sulfur batteries: development and future perspectives[J]. Small Methods, 2017, 1 (8): 1-8.
[7] ZHANG Ge, PENG Hongjie, ZHAO Chenzi, et al. The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries[J]. Angewandte Chemie-international Edition, 2018, 57 (51): 16732-16736.
[8] SHI Huifa, LÜ Wei, ZHANG Chen, et al. Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: confining, trapping, blocking, and breaking up[J]. Advanced Functional Materials 2018, 28 (38): 1-8.
[9] SU Yusheng, MANTHIRAM Arumugam. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer[J]. Nature Communications, 2012, 3 (1): 1-8.
[10] ZHOU Junliang, ZHAO Zhenxin, WU Tingyi, et al. Efficient catalytic conversion of polysulfides in multifunctional FeP/carbon cloth interlayer for high capacity and stability of lithium-sulfur batteries[J]. Acta Chimica Sinica, 2023, 81 (4): 351-358.
doi: 10.6023/A23010010
[11] ZHAI Peiyan, PENG Hongjie, CHENG Xinbing, et al. Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium-sulfur batteries[J]. Energy Storage Mater, 2017, 7:56-63.
[12] RANA Masud, HE Qiu, LUO Bin, et al. Multifunctional effects of sulfonyl-anchored, dual-doped multilayered graphene for high areal capacity lithium sulfur batteries[J]. ACS Central Science, 2019, 5 (12): 1946-1958.
doi: 10.1021/acscentsci.9b01005 pmid: 31893224
[13] LIU Feiran, WANG Ning, SHI Chunsheng, et al. Phosphorus doping of 3D structural MoS2 to promote catalytic activity for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 431:1-7.
[14] CI Haina, WANG Menglei, SUN Zhongti, et al. Direct insight into sulfiphilicity-lithiophilicity design of bifunctional heteroatom-doped graphene mediator toward durable Li-S batteries[J]. Journal of Energy Chemistry, 2022, 66,474-482.
[15] 孙丹, 李伟, 刘峥. 二维纳米材料MXene及其在锂离子电池中的应用研究进展[J]. 材料导报, 2021, 35(15): 15047-15055.
SUN Dan, LI Wei, LIU Zheng. Two-dimensional nanomaterial MXene and its research advances on applications in lithium-ion batteries[J]. Materials Reports, 2021, 35(15): 15047-15055.
[16] LIN Han, WANG Xingang, YU Luodan, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Letters, 2017, 17(1): 384-391.
doi: 10.1021/acs.nanolett.6b04339 pmid: 28026960
[17] ZHAO Shuangshuang, MENG Xing, ZHU Kai, et al. Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene[J]. Energy Storage Mater, 2017, 8: 42-48.
[18] SHAHZAD Faisal, ALHABEB Mohamed, HATTER Christine, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353: 1137-1140.
doi: 10.1126/science.aag2421 pmid: 27609888
[19] GHIDIU Michael, BARSOUM Michel W. The {110} reflection in X-ray diffraction of MXene films: misinterpretation and measurement via non-standard orientation[J]. Journal of the American Ceramic Society, 2017, 100 (12): 5395-5399.
[1] 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23.
[2] 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66.
[3] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[4] 杨琪, 邓南平, 程博闻, 康卫民. 树枝状磺化聚醚砜纤维基复合固态电解质的制备及其性能[J]. 纺织学报, 2024, 45(03): 1-10.
[5] 赵美奇, 陈莉, 钱现, 李晓娜, 杜迅. 用于铜离子检测的静电纺纤维膜制备及其性能[J]. 纺织学报, 2024, 45(03): 11-18.
[6] 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20.
[7] 周歆如, 范梦晶, 岳欣琰, 洪剑寒, 韩潇. 导电微纳纤维复合纱的制备及其气敏特性[J]. 纺织学报, 2024, 45(02): 52-58.
[8] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[9] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[10] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[11] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[12] 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224.
[13] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
[14] 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
[15] 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!