纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 24-32.doi: 10.13475/j.fzxb.20231002001
• 纺织科技新见解学术沙龙专栏:绿色功能与智能纺织品 • 上一篇 下一篇
宋贝贝1,2, 赵浩阅1,2, 李欣宇1,2, 屈展1,2, 方剑1,2()
SONG Beibei1,2, ZHAO Haoyue1,2, LI Xinyu1,2, QU Zhan1,2, FANG Jian1,2()
摘要:
为缓解锂硫电池中多硫化物的穿梭效应,在钴氮掺杂纳米纤维中引入MXene纳米片,利用静电纺丝与高温炭化技术,制备了载有MXene纳米片的钴氮掺杂碳纳米纤维(MX-Co/N-PCNFs),并将其作为锂硫电池中间层,探讨了MX-Co/N-PCNFs中间层的形貌结构和MXene的添加对于多硫化物的吸附以及电池电化学性能的影响。结果表明:当MXene分散液质量浓度为90 mg/mL,炭化温度为800 ℃时,得到的MX-Co/N-PCNFs比表面积为257.5 m2/g;将其作为中间层组装的电池,在0.2 C倍率下,循环100圈后,仍具有971.5 mA·h/g的容量;1 C倍率长循环400圈后,每圈容量衰减仅为0.063%;在高硫负载(4 mg/cm2)、0.5 C下循环50圈后,容量仍保持在853 mA·h/g,优于不添加MXene纳米片的中间层。
中图分类号:
[1] |
YAO Weiqi, ZHENG Weizhong, XU Jie, et al. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries[J]. ACS Nano, 2021, 15 (4): 7114-7130.
doi: 10.1021/acsnano.1c00270 pmid: 33764730 |
[2] | WANG Junling, CAI Wei, MU Xiaowei, et al. Designing of multifunctional and flame retardant separator towards safer high-performance lithium-sulfur batteries[J]. Nano Research, 2021, 14 (12): 4865-4877. |
[3] |
EVERS Scott, NAZAR Linda F. New approaches for high energy density lithium-sulfur battery cathodes[J]. Accounts of Chemical Research, 2013, 46 (5): 1135-1143.
doi: 10.1021/ar3001348 pmid: 23054430 |
[4] |
CHENG Xinbing, HUANG Jiaqi, ZHANG Qiang. Review: Li metal anode in working lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2018, 165 (1): 6058-6072.
doi: 10.1149/2.0111801jes |
[5] | HE Xiangming, REN Jianguo, WANG Li, et al. Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries[J]. Journal of Power Sources, 2009, 190 (1): 154-156. |
[6] | WANG Tianyi, KRETSCHMER Katja, CHOI Sinho, et al. Fabrication methods of porous carbon materials and separator membranes for lithium-sulfur batteries: development and future perspectives[J]. Small Methods, 2017, 1 (8): 1-8. |
[7] | ZHANG Ge, PENG Hongjie, ZHAO Chenzi, et al. The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries[J]. Angewandte Chemie-international Edition, 2018, 57 (51): 16732-16736. |
[8] | SHI Huifa, LÜ Wei, ZHANG Chen, et al. Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: confining, trapping, blocking, and breaking up[J]. Advanced Functional Materials 2018, 28 (38): 1-8. |
[9] | SU Yusheng, MANTHIRAM Arumugam. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer[J]. Nature Communications, 2012, 3 (1): 1-8. |
[10] |
ZHOU Junliang, ZHAO Zhenxin, WU Tingyi, et al. Efficient catalytic conversion of polysulfides in multifunctional FeP/carbon cloth interlayer for high capacity and stability of lithium-sulfur batteries[J]. Acta Chimica Sinica, 2023, 81 (4): 351-358.
doi: 10.6023/A23010010 |
[11] | ZHAI Peiyan, PENG Hongjie, CHENG Xinbing, et al. Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium-sulfur batteries[J]. Energy Storage Mater, 2017, 7:56-63. |
[12] |
RANA Masud, HE Qiu, LUO Bin, et al. Multifunctional effects of sulfonyl-anchored, dual-doped multilayered graphene for high areal capacity lithium sulfur batteries[J]. ACS Central Science, 2019, 5 (12): 1946-1958.
doi: 10.1021/acscentsci.9b01005 pmid: 31893224 |
[13] | LIU Feiran, WANG Ning, SHI Chunsheng, et al. Phosphorus doping of 3D structural MoS2 to promote catalytic activity for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 431:1-7. |
[14] | CI Haina, WANG Menglei, SUN Zhongti, et al. Direct insight into sulfiphilicity-lithiophilicity design of bifunctional heteroatom-doped graphene mediator toward durable Li-S batteries[J]. Journal of Energy Chemistry, 2022, 66,474-482. |
[15] | 孙丹, 李伟, 刘峥. 二维纳米材料MXene及其在锂离子电池中的应用研究进展[J]. 材料导报, 2021, 35(15): 15047-15055. |
SUN Dan, LI Wei, LIU Zheng. Two-dimensional nanomaterial MXene and its research advances on applications in lithium-ion batteries[J]. Materials Reports, 2021, 35(15): 15047-15055. | |
[16] |
LIN Han, WANG Xingang, YU Luodan, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Letters, 2017, 17(1): 384-391.
doi: 10.1021/acs.nanolett.6b04339 pmid: 28026960 |
[17] | ZHAO Shuangshuang, MENG Xing, ZHU Kai, et al. Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene[J]. Energy Storage Mater, 2017, 8: 42-48. |
[18] |
SHAHZAD Faisal, ALHABEB Mohamed, HATTER Christine, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353: 1137-1140.
doi: 10.1126/science.aag2421 pmid: 27609888 |
[19] | GHIDIU Michael, BARSOUM Michel W. The {110} reflection in X-ray diffraction of MXene films: misinterpretation and measurement via non-standard orientation[J]. Journal of the American Ceramic Society, 2017, 100 (12): 5395-5399. |
[1] | 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23. |
[2] | 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66. |
[3] | 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75. |
[4] | 杨琪, 邓南平, 程博闻, 康卫民. 树枝状磺化聚醚砜纤维基复合固态电解质的制备及其性能[J]. 纺织学报, 2024, 45(03): 1-10. |
[5] | 赵美奇, 陈莉, 钱现, 李晓娜, 杜迅. 用于铜离子检测的静电纺纤维膜制备及其性能[J]. 纺织学报, 2024, 45(03): 11-18. |
[6] | 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20. |
[7] | 周歆如, 范梦晶, 岳欣琰, 洪剑寒, 韩潇. 导电微纳纤维复合纱的制备及其气敏特性[J]. 纺织学报, 2024, 45(02): 52-58. |
[8] | 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55. |
[9] | 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64. |
[10] | 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16. |
[11] | 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26. |
[12] | 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224. |
[13] | 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35. |
[14] | 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73. |
[15] | 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23. |
|