纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 8-14.doi: 10.13475/j.fzxb.20230906101
• 纺织科技新见解学术沙龙专栏:绿色功能与智能纺织品 • 上一篇 下一篇
时吉磊1,2, 唐春霞1,2, 付少海1,2, 张丽平1,2()
SHI Jilei1,2, TANG Chunxia1,2, FU Shaohai1,2, ZHANG Liping1,2()
摘要:
纤维素基气凝胶骨架强度差、脆性强,受外力压缩后隔热性能有所下降,不利于实际应用。针对这一问题,通过引入双硅烷偶联剂1,2-二(三甲氧基硅基)乙烷(BTMSE)与纤维素纳米纤维(CNF)形成共价交联网络,借助冷冻干燥技术构筑微米级多孔柔韧的隔热纤维素气凝胶,分析了气凝胶的微观形貌、化学结构,研究了BTMSE加入量与气凝胶力学性能、导热系数之间的关系,探究了力学性能对隔热效果的影响。结果表明:气凝胶呈现典型的蜂窝状孔洞结构,具有98.15%的高孔隙率;共价交联作用使气凝胶能够承受自身500倍的重量而恢复原状,在应变为50%的情况下循环压缩200次后,应变损失仅为9.7%左右;由于低密度、交联网络和多孔结构的存在,气凝胶导热系数低至31.90 mW/(m·K);在60%压缩应变后导热系数增加量不超过1%。该改性气凝胶有望用于恶劣环境下的隔热保暖。
中图分类号:
[1] | JI Chao, WANG Ying, YE Zhenqiang, et al. Ice-templated MXene/Ag epoxy nanocomposites as high-performance thermal management materials[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24298-24307. |
[2] | DUAN Bo, GAO Huimin, HE Meng, et al. Hydrophobic modification on surface of chitin sponges for highly effective separation of oil[J]. ACS Applied Materials & Interfaces, 2014, 6(22): 19933-19942. |
[3] | JIANG Feng, HSIEH You Lo. Cellulose nanofibril aerogels: synergistic improvement of hydrophobicity, strength, and thermal stability via cross-linking with diisocyanate[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2825-2834. |
[4] | 陈彩虹. 纳米纤维素基气凝胶的制备及其隔热性能的研究[D]. 杭州: 浙江理工大学, 2022: 23. |
CHEN Caihong. Preparation and thermal insulation of nanocellulose based aerogel[D]. Hangzhou: Zhejiang Sci-Tech University, 2022:23. | |
[5] |
GUO Limin, CHEN Zhilin, LYU Shaoyi, et al. Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy[J]. Carbohydrate Polymers, 2018, 179: 333-340.
doi: S0144-8617(17)31118-9 pmid: 29111059 |
[6] |
SONG Jianwei, CHEN Chaoji, YANG Zhi, et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers[J]. ACS Nano, 2018, 12(1): 140-147.
doi: 10.1021/acsnano.7b04246 pmid: 29257663 |
[7] | YANG Jin, XIA Yunfei, XU Peng, et al. Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation[J]. Cellulose, 2018, 25(6): 3533-3544. |
[8] |
BERND Wicklein, ANDRAZ Kocjan, et al. GERMAN Salazar Alvarez,Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide[J]. Nature Nanotechnology, 2015, 10(3): 277-283.
doi: 10.1038/nnano.2014.248 pmid: 25362476 |
[9] | 穆梦雅. 机械柔韧纳米纤维素气凝胶的结构调控及应用性能研究[D]. 杭州: 浙江理工大学, 2022: 21-22. |
MU Mengya. Study on structure regulation and applied pr operties of mechanically flexible nanocellulose aerogel[D]. Hangzhou: Zhejiang Sci-Tech University, 2022:21-22. | |
[10] | 张君妍. 柔性隔热细菌纤维素基气凝胶材料的结构设计与性能研究[D]. 上海: 东华大学, 2020: 88-89. |
ZHANG Junyan. Structural design and properties of flexible thermal insulation bacterial cellulose based aerogel materials[D]. Shanghai: Donghua University, 2020:88-89. | |
[11] | 王世贤, 降帅, 李萌萌, 等. 硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征[J]. 纺织学报, 2020, 41(3):33-38. |
WANG Shixian, JIANG Shuai, LI Mengmeng, et al. Preparation and characterization of nanocellulose aerogel modified by silane coupling agent[J]. Journal of Textile Research, 2020, 41(3):33-38. | |
[12] | FENG Jingduo, LE Duyen, NGUYEN Son T. Silica@cellulose hybrid aerogels for thermal and acoustic insulation applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506: 298-305. |
[13] | DO Nga H N, TRAN Viet T, TRAN Quang B M. Recycling of pineapple leaf and cotton waste fibers into heat-insulating and flexible cellulose aerogel composites[J]. Journal of Polymers and the Environment, 2021, 29(4):1112-1121. |
[14] | HUANG Jiali, WANG Xin, GUO Wenwen, et al. Eco-friendly thermally insulating cellulose aerogels with exceptional flame retardancy, mechanical property and thermal stability[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022. DOI: 10.1016/j.jtice.2021.104159. |
[1] | 李平, 朱平, 刘云. 壳聚糖基膨胀阻燃涤纶/棉混纺织物的制备及其性能[J]. 纺织学报, 2024, 45(02): 162-170. |
[2] | 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73. |
[3] | 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8. |
[4] | 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171. |
[5] | 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77. |
[6] | 王世贤, 降帅, 李萌萌, 刘丽芳, 张丽. 硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征[J]. 纺织学报, 2020, 41(03): 33-38. |
[7] | 刘铭 张丽平 张敏 王晓春 赵国樑 王轩 唐星辰 杨中开. 铁黄颜料的表面改性及其在超高分子量聚乙烯中的应用[J]. 纺织学报, 2018, 39(02): 86-90. |
[8] | 蔡薇琦 马崇启 阚永葭 杨金莲 李君丽 . 灰色聚类分析在织物热学性能评价中的应用[J]. 纺织学报, 2016, 37(11): 64-67. |
[9] | 杨媛媛 徐英莲. GA固胶工艺对茧丝性能的影响[J]. 纺织学报, 2014, 35(3): 57-0. |
[10] | 贾雪平 施磊 尤克非 季志扬 张跃华 金瑞娣. 新型载银抗菌棉织物的研制[J]. 纺织学报, 2013, 34(5): 82-85. |
[11] | 朱方龙;张渭源. 应急热防护织物有效导热系数分形模型[J]. 纺织学报, 2008, 29(6): 39-43. |
|