纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 102-112.doi: 10.13475/j.fzxb.20230402301

• 染整工程 • 上一篇    下一篇

两性纤维素多孔凝胶球的制备及其动态吸附性能

郑康, 龚文丽, 鲍杰, 刘琳()   

  1. 浙江理工大学 材料科学与工程学院, 浙江 杭州 310018
  • 收稿日期:2023-04-18 修回日期:2024-01-12 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 刘琳(1981—),女,教授,博士。主要研究方向为生物质功能材料的设计合成与应用研究。E-mail:linliu@zstu.edu.cn。
  • 作者简介:郑康(1998—),男,硕士生。主要研究方向为生物质材料在水处理中的应用。
  • 基金资助:
    浙江省公益技术研究计划项目(LGF18E030003)

Preparation and dynamic adsorption properties of amphoteric cellulose porous hydrogel spheres

ZHENG Kang, GONG Wenli, BAO Jie, LIU Lin()   

  1. College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2023-04-18 Revised:2024-01-12 Published:2024-05-15 Online:2024-05-31

摘要:

用于废水处理的多孔凝胶球存在制备工艺繁琐,吸附种类单一,吸附效率低等不足;为提高多孔凝胶球的性能,采用滴入相分离、酯化反应引入羧基及希夫碱反应引入氨基的化学改性方法,制备得到兼具高孔隙率、高力学性能和羧基/氨基活性基团的两性纤维素多孔凝胶球(ACM),并构建动态吸附柱装置以探究不同条件下ACM对染料的动态吸附性能。结果表明:通过降低染料初始质量浓度,增加填料高度和减慢进液流速的方式可有效提高吸附柱的动态吸附效率;0.8 g的ACM可处理7.5 L含染料的废水;对ACM的动态吸附过程进行动态模型拟合,其与Thomas和Yoon-Nelson模型的拟合程度高,表明吸附是均匀表面的单分子层吸附,动态吸附过程中存在2个或多个速率控制步骤,内部扩散和外部扩散均不是吸附过程中的限速步骤。基于ACM优异的分级孔结构、丰富的活性位点和低传质阻力等优势,认为ACM展现出良好的动态吸附性能,在印染废水处理方面有较大应用潜力。

关键词: 纤维素, 两性凝胶球, 吸附分离, 阴阳离子染料, 动态吸附性能, 印染废水, 废水处理

Abstract:

Objective Cellulose porous hydrogel spheres are increasingly used as adsorption fillers by virtue of their combined properties, which have become a current research focus. However, the preparation of these spheres is currently cumbersome and they exhibit limited adsorption efficiency and single adsorption species, restricting their applications. Therefore, it is important to develop a simple and efficient biomass adsorbent with both adsorption and separation capacity for ionic dyes.

Method In this paper, amphoteric cellulose porous microsphere (ACM) was developed by a two-step chemical modification method of esterification and Schiff base reaction. The surface morphology, pore structure and mechanical properties of the hydrogel spheres were characterized and analyzed using field emission scanning electron microscopy, specific surface area and pore size distribution instrument and universal testing machine, respectively. The adsorption column device was constructed to investigate the adsorption properties of ACM.

Results The specific surface area, pore size distribution and porosity of ACM with abundant pore structure on the surface and inside were 123.97 m2/g, 0.633 cm3/g and 89.22%, respectively. The compressive strength of ACM was found to be 591.9 kPa at 30% compression deformation, and the mechanical properties were about 63% of the initial value after 40 cycles of compression. ACM showed good compressive strength as well as structural stability because the carboxylation reaction took place at a high temperature, which increased the skeletal density and strength of the hydrogel spheres. Cross-linking occurred during the two-step reaction, producing three-dimensional network structure that enhanced the mechanical properties. It was found that the dynamic adsorption efficiency of the adsorption column wase improved by reducing the initial concentration, increasing the loading height, and slowing down the feed rate. With 0.8 g hydrogel spheres it was possible to treat almost 7.5 L of dye containing wastewater. The hydrogel spheres were chemically modified in two steps to combine high porosity, high mechanical properties, and abundance of carboxyl/amino active groups. 80% separation of mixed dyes was achieved by ACM, which possesses both carboxyl and amino active groups and has different adsorption properties under different acid and base conditions.

Conclusion The influence of different device parameters on the dynamic adsorption of ACM was investigated, and it was found that the dynamic adsorption efficiency of the column could be improved by decreasing the initial concentration, increasing the loading height, and slowing down the feed rate. The final device parameters were determined as 50 mg/L inlet concentration, 12 cm filling height and 4 mL/min inlet speed. 0.8 g of hydrogel spheres could treat about 7.5 L of wastewater containing dye MeB at the optimum device parameters, demonstrating the good adsorption and separation performance of the ACM.

Key words: cellulose, amphoteric hydrogel sphere, adsorption separation, anionic and cationic dye, dynamic adsorption property, printing and dyeing wastewater, wastewater treatment

中图分类号: 

  • X703.1

图1

ACM的制备流程图"

图2

ACM的吸附柱装置示意图及动态吸附过程"

图3

CM和ACM的红外光谱图"

图4

在不同pH值下CM和ACM的Zeta电位"

图5

ACM的扫描电镜照片"

图6

ACM的N2吸附-脱附等温线、孔径分布以及与其它文献比表面积的比较"

图7

ACM在不同条件下的抗压强度-应变曲线"

图8

不同初始质量浓度下ACM的突破曲线"

表1

不同初始质量浓度下ACM的动态吸附结果"

样品 tb/min Rb/% ts/min Rs/% Qe/(mg·g-1) HMTZ/cm
C25 21 0.79 3 308 0.520 215.11 11.923
C50 42 0.81 1 870 0.467 218.71 11.744
C100 10 0.73 870 0.505 219.84 11.862

图9

不同填料高度下ACM的突破曲线"

表2

不同填料高度下ACM的动态吸附结果"

样品 tb/min Rb/% ts/min Rs/% Qe/(mg·g-1) HMTZ/cm
H12 42.0 0.81 1870 0.467 218.71 11.74
H10 55.0 0.81 1480 0.456 202.56 9.62
H8 6.3 0.69 1091 0.389 159.01 7.95

图10

不同进液流速下ACM的突破曲线"

表3

不同进液速度下ACM的动态吸附结果"

样品 tb/min Rb/% ts/min Rs/% Qe/(mg·g-1) HMTZ/cm
V4 42 0.81 1 870 0.467 218.71 11.74
V6 63 0.82 1 342 0.421 212.37 11.43
V8 19 0.78 896 0.329 147.75 11.74

图11

不同条件下Thomas模型的拟合线性图"

表4

Thomas模型相关参数"

样品 实验数据 Thomas模型
Qe/
(mg·g-1)
kTh/
(mL·min-1·mg-1)
Q0/
(mg·g-1)
R2
C25 215.11 0.031 5 218.242 0.933 9
C50 218.71 0.030 8 218.541 0.953 3
C100 219.84 0.029 1 220.010 0.974 8
H12 218.71 0.030 8 218.541 0.953 3
H10 202.56 0.035 0 197.171 0.820 7
H8 159.01 0.041 0 124.958 0.802 0
V4 218.71 0.030 8 218.541 0.953 3
V6 212.37 0.045 6 212.261 0.920 6
V8 147.75 0.060 2 115.794 0.725 5

图12

不同条件下与Yoon-Nelson模型的拟合图"

表5

Yoon-Nelson模型相关参数"

样品 实验数据 Yoon-Nelson模型
t0.5/min Q0.5/mg R0.5/% kYN/min-1 τ0.5/min R2
C25 2 008 131.612 0.655 43 0.000 79 1 745.939 0.933 9
C50 721 96.624 0.670 06 0.001 54 874.162 0.953 3
C100 477 119.501 0.626 31 0.002 91 440.021 0.974 8
H12 721 96.624 0.670 06 0.001 54 874.162 0.953 3
H10 397 53.108 0.668 86 0.001 75 657.566 0.820 7
H8 184 22.368 0.607 82 0.002 05 333.639 0.802 0
V4 721 96.624 0.670 06 0.001 54 874.162 0.953 3
V6 451 87.006 0.643 06 0.002 28 566.031 0.920 6
V8 135 35.448 0.653 54 0.003 01 231.588 0.725 5

图13

不同条件下与Adams-Bohart模型的拟合图"

表6

Adams-Bohart模型相关参数"

样品 kAB/(mL·min-1·mg-1) N0/(mg·L-1) R2
C25 0.008 3 72 140.0 0.909 1
C50 0.015 8 38 052.5 0.862 3
C100 0.030 4 18 983.6 0.932 2
H12 0.015 8 38 052.5 0.862 3
H10 0.019 1 29 238.5 0.692 7
H8 0.019 3 22 390.2 0.631 1
V4 0.015 8 38 052.5 0.862 3
V6 0.023 4 25 240.9 0.794 8
V8 0.028 4 16 080.7 0.572 7

图14

不同酸碱度下凝胶球对混合染料的突破曲线"

[1] GONG W L, ZHENG K, ZHANG C Y, et al. Simultaneous and efficient removal of heavy metal ions and organophosphorus by amino-functionalized cellulose from complex aqueous media[J]. Journal of Cleaner Production, 2022. DOI: 10.1016/j.jclepro.2022.133040.
[2] 孙慧萍, 吕文洲. 膨润土负载锌-钴催化臭氧处理模拟染料废水[J]. 纺织学报, 2019, 43(2): 118-124.
SUN Huiping, LÜ Wenzho. Bentonite supported Zn-Co ozone catalyst for treatment of simulated dye waste-water[J]. Journal of Textile Research, 2019, 43(2): 118-124.
[3] LANGBEHN R K, MICHELS C, SOARES H M. Antibiotics in wastewater: From its occurrence to the biological removal by environmentally conscious technologies[J]. Environmental Pollution, 2021. DOI: 10.1016/j.envpol.2021.116603.
[4] CHENG H, LI L J, WANG B J, et al. Multifaceted applications of cellulosic porous materials in environment, energy, and health[J]. Progress in Polymer Science, 2020. DOI: 10.1016/j.progpolymsci.2020.101253.
[5] YAO T, GUO S, ZENG C, et al. Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres[J]. Journal of Hazardous Materials, 2015, 292: 90-97.
doi: 10.1016/j.jhazmat.2015.03.014 pmid: 25797927
[6] HAQUE A N M A, REMADEVI R, NAEBE M. A review on cotton gin trash: sustainable commodity for material fabrication[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2020.125300.
[7] 魏娜娜, 刘碟, 马政, 等. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(2): 53-60.
WEI Nana, LIU Die, MA Zheng, et al. Adsorption perfor-mance of cellulose/chitosan magnetic aerogel prepared by freeze-thawing method[J]. Journal of Textile Research, 2022, 43(2): 53-60.
[8] SHI W, CHING Y C, CHUAH C H. Preparation of aerogel beads and microspheres based on chitosan and cellulose for drug delivery: a review[J]. International Journal of Biological Macromolecules, 2021, 170: 751-767.
doi: 10.1016/j.ijbiomac.2020.12.214 pmid: 33412201
[9] LI J L, ZHOU L J, SONG Y K, et al. Green fabrication of porous microspheres containing cellulose nanocrystal/MnO2 nanohybrid for efficient dye removal[J]. Carbohydrate Polymers, 2021. DOI: 10.1016/j.carbpol.2021.118340.
[10] DING Y H, SONG C H, GONG W L, et al. Robust, sustainable, hierarchical multi-porous cellulose beads via pre-crosslinking strategy for efficient dye adsorption[J]. Cellulose, 2021, 28(11): 7227-7241.
[11] CHEN C, CHEN Z L, SHEN J M, et al. Dynamic adsorption models and artificial neural network prediction of mercury adsorption by a dendrimer-grafted polyacrylonitrile fiber in fixed-bed column[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2021.127511.
[12] XU L H, WANG S D, ZHOU J W, et al. Column adsorption of 2-naphthol from aqueous solution using carbon nanotube-based composite adsorbent[J]. Chemical Engineering Journal, 2018, 335: 450-457.
[13] YIN Y, XU G Y, XU Y X, et al. Adsorption of inorganic and organic phosphorus onto polypyrrole modified red mud: evidence from batch and column experiments[J]. Chemosphere, 2022. DOI: 10.1016/j.chemosphere.2021.131862.
[14] BO S, LUO J, AN Q, et al. Efficiently selective adsorption of Pb(II) with functionalized alginate-based adsorbent in batch/column systems: mechanism and application simulation[J]. Journal of Cleaner Production, 2020. DOI: 10.1016/j.jclepro.2019.119585.
[15] LI T F, WANG X Q, JIAO J, et al. Catalytic transesterification of pistacia chinensis seed oil using hpw immobilized on magnetic composite graphene oxide/cellulose microspheres[J]. Renewable Energy, 2018, 127: 1017-1025.
[16] ROCHA I, HATTORI Y, DINIZ M, et al. Spectroscopic and physicochemical characterization of sulfonated cladophora cellulose beads[J]. Langmuir, 2018, 34(37): 11121-11125.
doi: 10.1021/acs.langmuir.8b01704 pmid: 30169040
[17] DU K F, LIU X H, LI S K, et al. Synthesis of Cu2+ chelated cellulose/magnetic hydroxyapatite particles hybrid beads and their potential for high specific adsorption of histidine-rich proteins[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11578-11586.
[18] RUAN C Q, STROMME M, LINDH J. Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye[J]. Carbohydrate Polymers, 2018, 181: 200-207.
[19] OONA K, TATIANA B. All-cellulose composite aerogels and cryogels[J]. Composites Part A, 2020. DOI: 10.1016/j.compositesa.2020.106027.
[20] PAN Y F, XIE H L, LIU H Y, et al. Novel cellulose/montmorillonite mesoporous composite beads for dye removal in single and binary systems[J]. Bioresource Technology, 2019. DOI: 10.1016/j.biortech.2019.121366.
[1] 马凯, 邓璐璐, 王学琳, 石国民, 邹光龙. 棉浆纤维素/质子型离子液体溶液的流变行为[J]. 纺织学报, 2024, 45(05): 10-18.
[2] 冯颖, 于汉哲, 张宏, 李可心, 马标, 董鑫, 张建伟. 静电纺壳聚糖基纳米纤维的制备及其在水处理中应用研究进展[J]. 纺织学报, 2024, 45(05): 218-227.
[3] 刘懿德, 李凯, 姚久勇, 成芳芳, 夏延致. 纤维素水凝胶纤维的制备及其阻燃传感性能[J]. 纺织学报, 2024, 45(04): 1-7.
[4] 李方, 张怡立, 王曼, 孟祥周, 沈忱思. 锑污染物对绿藻及蓝藻的急性毒性效应[J]. 纺织学报, 2024, 45(04): 169-179.
[5] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[6] 时吉磊, 唐春霞, 付少海, 张丽平. 柔韧隔热纤维素基气凝胶制备与性能[J]. 纺织学报, 2024, 45(04): 8-14.
[7] 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147.
[8] 韩俊峰, 王云霞, 吴伟, 胡超凡, 封其春, 杜兆芳. 纤维素/茶渣复合薄膜的可控制备及其食品保鲜性能[J]. 纺织学报, 2024, 45(03): 28-35.
[9] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[10] 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47.
[11] 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25.
[12] 张永芳, 费鹏飞, 阎智锋, 王淑花, 郭红. 废弃纤维素纺织品水热降解技术的研究进展[J]. 纺织学报, 2023, 44(12): 216-224.
[13] 黄彪, 郑莉娜, 秦妍, 程羽君, 李成才, 朱海霖, 刘国金. 多孔型TiO2微粒的制备及其对离子型染料的吸附[J]. 纺织学报, 2023, 44(11): 167-175.
[14] 李璟孜, 娄蒙蒙, 黄世燕, 李方. 基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理[J]. 纺织学报, 2023, 44(09): 116-123.
[15] 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!