纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 121-128.doi: 10.13475/j.fzxb.20230507701

• 染整工程 • 上一篇    下一篇

非线性阳离子聚氨酯改性有机硅柔软剂的制备及其应用性能

权衡1,2,3, 钱赛龙1,2,4, 刘诗楠1,2, 邹春梅5, 倪丽杰2,3,4()   

  1. 1.武汉纺织大学 纺织科学与工程学院, 湖北 武汉 430200
    2.生物质纤维与生态染整湖北省重点实验室, 湖北, 武汉 430200
    3.江汉平原纺织服装产业技术研究院, 湖北 荆州 434000
    4.浙江省清洁染整技术研究重点实验室(绍兴文理学院), 浙江 绍兴 312000
    5.湖北达雅生物科技股份有限公司, 湖北 荆州 434200
  • 收稿日期:2023-05-30 修回日期:2024-01-16 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 倪丽杰(1985—),男,高级实验师,博士生。主要研究方向为高分子纺织化学助剂及废旧纺织品回用技术研究。E-mail:vistanlj@wtu.edu.cn。
  • 作者简介:权衡(1971—),男,教授,博士。主要研究方向为高分子纺织化学助剂及清洁印染工艺研究。
  • 基金资助:
    浙江省清洁染整技术研究重点实验室开放基金(OJRZ2210);湖北省重点研发计划项目(2023BAB125)

Preparation and application performance of nonlinear cationic polyurethane modified silicone softener

QUAN Heng1,2,3, QIAN Sailong1,2,4, LIU Shinan1,2, ZOU Chunmei5, NI Lijie2,3,4()   

  1. 1. School of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan, Hubei 430200, China
    3. Jianghan Plain Textile and Garment Industry Technology Research Institute, Jingzhou, Hubei 434000, China
    4. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province(Shaoxing University), Shaoxing, Zhejiang 312000, China
    5. Hubei Daya Biotechnology Co., Ltd., Jingzhou, Hubei 434200, China
  • Received:2023-05-30 Revised:2024-01-16 Published:2024-05-15 Online:2024-05-31

摘要:

针对聚硅氧烷与聚氨酯分子极性差异较大、二者的复配物在焙烘过程中易发生微相分离导致纺织品的亲水性和手感均差的问题,以三乙醇胺、羟烃基硅油、聚乙二醇2000、异佛尔酮二异氰酸酯为原料,设计合成了非线性阳离子型聚氨酯改性有机硅柔软剂。对合成产物进行表征,并将其用于棉织物和锦纶/氨纶织物的柔软整理。分析了整理后织物的形貌、元素分布、折皱回复角、亲水性和综合手感。结果表明:氨基硅油(AS)与支化型阳离子聚氨酯改性有机硅柔软剂(BS)复配物的最大质量损失速率温度由AS的334 ℃提升至397 ℃,且该复配物整理后的锦纶/氨纶织物表面硅元素的质量分数由1.4%降低至0.8%;经支化结构阳离子聚氨酯改性有机硅柔软剂(BS)整理后,棉织物的折皱回复角为190.0°、锦纶/氨纶织物的亲水时间为20.1 s;BS与AS复合后整理织物,棉织物的折皱回复角为129.1°,锦纶/氨纶织物的亲水时间为48.6 s。与用氨基硅油整理相比,经非线性阳离子聚氨酯改性有机硅柔软剂与氨基硅油的复配物整理,锦纶/氨纶织物的亲水性、弹性、平滑度、蓬松感和暖感都有明显提升,其在高级时尚服装面料和运动服装面料领域均有较好的应用前景。

关键词: 柔软剂, 有机硅改性, 改性聚氨酯, 非线性结构, 抗皱, 亲水性, 锦纶/氨纶织物

Abstract:

Objective The softening finishing of fabric is an important part in textile processing, which improves comfort of textile products. However, the commonly used amino silicone oil softener is known to cause decrease in the hydrophilicity and elasticity of fabrics. Thus, designing and developing a new type of softener, which could improve the hydrophilicity while maintaining the unique style and superior feel of finished fabrics, is expected to solve the problem of existing amino silicone oil softeners.

Method Triethanolamine and isophorone diisocyanate (IPDI) were adopted to prepare the prepolymer. The chain extension was carried out by introducing small molecule hydroxyalkyl silicone oil 3667(D3667) and polyethylene glycol 2000(PEG2000) into the prepolymer. A series of nonlinear cationic polyurethane modified silicone softeners (BS, LcS and NmS) were synthesized associated with different feeding ratios of IPDI, PEG2000 and D3667. The chemical structure of the products was characterized by Fourier transform infrared spectra. The thermodynamic properties and surface morphology were utilized to explore the blending state between nonlinear cationic polyurethane modified silicone softener and amino silicon oil. The crease recovery angle, hydrophilicity and comprehensive hand feel of the finished fabric were studied to reveal the influence of softener structure on the performance of textile.

Results Through thermal performance testing, it was found that the maximum weight loss rate temperature of the composite of AS and branched cationic polyurethane modified silicone softener (BS) increased from 334 ℃ to 397 ℃ compared to amino silicone oil (AS). It was found that only one endothermic peak remained in BS/AS mixture, indicating that the BS/AS composite exhibited excellent blending performance and would be less prone to microphase separation. No significant difference was identified in the surface morphology between the AS treated bleached nylon/spandex fiber and the BS/AS composite treated fiber in the knitted fabrics, and the mass fraction of silicon element of BS/AS treated fiber surface (0.8%) was between that of the AS (1.4%) and BS (0.04%). This result confirmed that BS formed a uniform mixture with AS to resist the microphase separation. The convenitional amino silicon oil treated cotton fabric showed a crease recovery angle of 95.4° and a hydrophilic time of more than 800.0 s for nylon/spandex fabric. After composite treatment with branched cationic polyurethane modified silicone softener, the crease recovery angle of the cotton fabric was increased to 129.1°, and the hydrophilic time of nylon/spandex fabric was decreased to 48.6 s, significantly improving the hydrophilicity and crease recovery angle of amino silicone oil. This improvement can be attributed to the entanglement and bonding between the non-linear cationic polyurethane modified silicone softener and the hydrophobic chain segments of amino silicone oil. As for comprehensive hand feel, the BS/AS complex was shown to improve the smoothness, bulkiness, and warmth of the nylon/spandex fabric, but decrease the softness.

Conclusion Nonlinear cationic polyurethane modified silicone softener can form a uniform mixture with amino silicone oil, and the thermal stability of the composite is improved. The molecular entanglement and association between the nonlinear cationic polyurethane modified silicone softener and amino silicone oil can effectively prevent the accumulation of amino silicone oil on the auxiliary/air interface, thus improving the crease recovery angle of cotton fabrics and the hydrophilicity of nylon/spandex fabrics. The BS/AS complex can improve the smoothness, bulkiness, and warmth of nylon/spandex fabrics, demonstrating promising application prospects in high-end fashion or sportswear fabrics.

Key words: softening agent, organosilicone modification, modified polyurethane, nonlinear structure, anti-crease, hydrophilic, nylon/spandex fabric

中图分类号: 

  • TS195.5

图1

BS制备反应过程示意图和LcS与NmS分子结构图"

图2

BS、LcS、NmS的红外光谱图"

图3

BS的凝胶色谱图"

图4

BS、LcS、NmS的粒径分布曲线"

图5

AS、BS、BS/AS同一升温速率下的TG/DTG曲线"

图6

AS、BS、BS/AS在相同升温速率下的DSC曲线"

表1

锦纶/氨纶织物表面元素的质量占比"

整理剂 质量占比/%
C N O Si
空白 46.3 28.2 25.5 0
AS 49.4(35.0) 23.8(0.9) 25.5(23.3) 1.4(40.8)
BS 50.0(42.5) 26.3(1.6) 23.7(45.8) 0.04(10.1)
BS/AS 46.2(38.7) 26.4(1.2) 26.7(34.6) 0.8(25.5)

图7

整理前后锦纶/氨纶织物的SEM照片(×2 000)"

表2

整理前后织物的折皱回复角和亲水性能"

棉织物 锦纶/氨纶织物
整理剂 折皱
回复角/(°)
整理剂 亲水
时间/s
107.2 753.5
AS 95.4 AS >800.0
BS 190.0 BS 20.1
LcS 150.7 LcS 10.3
NmS 148.7 NmS 26.3
BS/AS 129.1 BS/AS 48.6
LcS/AS 129.9 LcS/AS 66.9
NmS/AS 140.1 NmS/AS 116.5

图8

整理前后锦纶/氨纶织物的综合手感对比"

[1] 汤金伟, 冯俏君, 刘宽, 等. 高稳定改性亲水硅油柔软剂的制备及其应用[J]. 化学工程师, 2022, 36(8):108-110.
TANG Jinwei, FENG Qiaojun, LIU Kuan, et al. Preparation and application of high stability modified hydrophilic silicone oil softener[J]. Chemical Engineer, 2022, 36(8):108-110.
[2] 杨红英, 张家耀, 张建祥, 等. 5种整理方式对棉织物风格的影响[J]. 棉纺织技术, 2020, 48(7):26-29.
YANG Hongying, ZHANG Jiayao, ZHANG Jianxiang, et al. Influence of five finishing method on cotton fabric style[J]. Cotton Textile Technology, 2020, 48(7):26-29.
[3] 罗明智, 孙志强, 吕杰文, 等. 多纤维组合针织物固态软片柔软整理的应用[J]. 印染助剂, 2023, 40(6):43-46.
LUO Mingzhi, SUN Zhiqiang, LÜ Jiewen, et al. Application of solid soft film soft finishing of multi-fiber combination knitted fabric[J]. Textile Auxiliaries, 2023, 40(6):43-46.
[4] WEI Y, ZHENG C, CHEN P, et al. Synthesis of multiblock linear polyether functional amino silicone softener and its modification of surface properties on cotton fabrics[J]. Polymer Bulletin, 2019, 76(1):447-467.
[5] SUNG H C, JUN H Y, HOON B L, et al. Evaluation of touch and durability of cotton knit fabrics treated with reactive urethane-silicone softeer[J]. Polymers, 2022, 14(9):1873-1873.
[6] 王彦珍, 宋秘钊, 王娟, 等. 氨基聚醚改性硅油柔软剂在亚麻织物上的应用[J]. 棉纺织技术, 2021, 49(10):38-41.
WANG Yanzhen, SONG Mizhao, WANG Juan, et al. Application of amino polyether modified silicone oil softener on flax fabric[J]. Cotton Textile Technology, 2021, 49(10):38-41.
[7] 孟令熹. 新型聚氨酯改性嵌段聚醚氨基硅油的合成及应用[J]. 有机硅材料, 2020, 34(6):29-34.
MENG Lingxi. Synthesis and application of a novel pol yure thane modified block polyether amino silicone oil[J]. Organosilicon Materials, 2020, 34(6):29-34.
[8] 祝令海. 织物柔软整理中常见的问题及解决方案[J]. 染整技术, 2020, 42(11):12-14.
ZHU Linghai. Common problems and solutions in fabric softening finishing[J]. Dyeing and Finishing Technology, 2020, 42(11):12-14.
[9] 梁亚静, 姚金波, 冯懋, 等. 棉织物用无甲醛抗皱整理剂的研究进展[J]. 现代纺织技术, 2023, 31(1):285-292.
doi: 10.19398/j.att.202207061
LIANG Yajing, YAO Jinbo, FENG Mao, et al. Research progress of formaldehyde-free wrinkle resistant finishing agents for cotton fabrics[J]. Advanced Textile Technology, 2023, 31(1):285-292.
doi: 10.19398/j.att.202207061
[10] 彭军, 董任峰, 赖培旭, 等. 水性聚氨酯的合成制备及改性技术研究[J]. 广东化工, 2023, 50(3):24-26.
PENG Jun, DONG Renfeng, LAI Peixu, et al. Study on synthesis and modification of waterborne poly-urethane[J]. Guangdong Chemical Industry, 2023, 50(3):24-26.
[11] PENG H, ZHANG P, XIE J, et al. Properties of cotton fabrics treated by etherification and esterification and esterification/addition crosslinking with an amino-functional silicon softener[J]. Cellulose, 2021, 28(11):1-14.
[12] 杨振声, 王炳帅. 烯丙基聚烷氧基环氧醚的制备及其性能[J]. 纺织学报, 2022, 43(3):103-109.
YANG Zhensheng, WANG Bingshuai. Preparation and performance of allyl polyalkoxy epoxy ether[J]. Journal of Textile Research, 2022, 43(3):103-109.
[13] 李家鑫, 宋秘钊, 韩洪帅, 等. 氨基环氧基双改性氢硅氧烷柔软剂的应用[J]. 印染, 2023, 49(6):46-48.
LI Jiaxin, SONG Mizhao, HAN Hongshuai, et al. Application of amino-epoxy modified hydrosiloxane softener[J] China Dyeing & Finishing, 2023, 49(6):46-48.
[14] 陆健华, 徐成书, 张晶, 等. 嵌段硅油复配柔软剂在棉针织物上的整理应用[J]. 纺织科学与工程学报, 2021, 38(4):36-39.
LU Jianhua, XU Chengshu, ZHANG Jing, et al. Finish ing application of block silicone oil compound softener[J]. Journal of Textile Science and Engineering, 2021, 38(4):36-39.
[15] 权衡, 任敬之, 陈文龙, 等. 有机硅及其共混物在锦纶/氨纶织物上的迁移与分布[J]. 纺织学报, 2022, 43(6):115-120.
QUAN Heng, REN Jingzhi, CHEN Wenlong, et al. Migration and distribution of organosilicon and its blends on polyamide/polyurethane fabrics[J]. Journal of Textile Research, 2022, 43(6):115-120.
[16] MEHDI G, VAHID A H, SAHEBI I J. A review on microphase separation measurement techniques for polyurethanes[J]. Journal of Plastic Film Sheeting, 2022, 38(4):502-541.
[17] ARÉVALO-ALQUICHIRE S, MORALES-GONZALEZ M, NAVAS-GÒMEZ K, et al. Influence of polyol/crosslinker blend composition on phase separation and thermo-mechanical properties of polyurethane thin films[J]. Polymers, 2020.DOI:10.3390/polym12030666.
[18] 王琳, 李入林, 陈文涛, 等. N-(苯乙酰氨基)-N'-(α-萘乙酰基)硫脲的热解机理及热动力学研究[J]化学学报, 2009, 67(8):838-842.
WANG Lin, LI Rulin, CHEN Wentao, et al. Thermal decomposition mechanism and kinetics of N-(phenyl-acetamido)-N'-(α naphthylaceto) thiourea[J]. Acta Chimica Sinica, 2009, 67(8):838-842.
[19] 刘帆, 谭艳君, 霍倩. 氨基硅油改性丙烯酸酯黏合剂的合成及在芳纶印花中的应用[J]. 印染, 2021, 47(4):11-15.
LIU Fan, TAN Yanjun, HUO Qian. Synthesis of amino oil modified acrylate and its application in aramidon printing[J]. China Dyeing & Finishing, 2021, 47(4):11-15.
[20] 徐成书, 吴梦婷, 任燕, 等. 线性聚醚嵌段氨基硅油的制备及其性能[J]. 纺织学报, 2019, 40(8):89-94.
XU Chengshu, WU Mengting, REN Yan, et al. Preparation and properties of linear polyether-blocked amino silicone[J]. Journal of Textile Research, 2019, 40(8):89-94.
[1] 权衡, 任敬之, 陈文龙, 袁辉, 谢南平, 巫若子, 倪丽杰. 有机硅及其共混物在锦纶/氨纶织物上的迁移与分布[J]. 纺织学报, 2022, 43(06): 115-120.
[2] 王艳萍, 陈晓倩, 夏伟, 傅佳佳, 高卫东, 王鸿博, ARTUR Cavaco-Paulo. 角质酶在涤纶织物表面改性中的应用[J]. 纺织学报, 2022, 43(05): 136-142.
[3] 杨振声, 王炳帅. 烯丙基聚烷氧基环氧醚的制备及其性能[J]. 纺织学报, 2022, 43(03): 103-109.
[4] 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3C2Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177.
[5] 侯文双, 闵洁, 纪峰, 张建祥, 苏梦, 何瑞娴. 织物紧度和抗皱整理工艺对纯棉机织物折皱回复性的影响[J]. 纺织学报, 2021, 42(01): 118-124.
[6] 于岩, 章若红, 钟毅, 杜英英, 毛志平, 徐红. 用气相色谱-质谱法测定纺织柔软剂中的环硅氧烷[J]. 纺织学报, 2020, 41(08): 69-73.
[7] 苏旭中, 魏艳红, 刘新金, 谢春萍. 纺纱方式对织物抗皱性能及拉伸弹性的影响[J]. 纺织学报, 2020, 41(04): 33-38.
[8] 张欢, 闫俊, 王晓武, 焦安东, 李红, 郑来久, 何婷婷. 低温等离子体在涤纶表面改性中的应用[J]. 纺织学报, 2019, 40(07): 103-107.
[9] 张腾飞, 石禄丹, 胡红梅, 王宇, 王学利, 俞建勇. 生物基聚酰胺56低聚物改性聚酯的合成及其表征[J]. 纺织学报, 2019, 40(06): 1-7.
[10] 李冰, 盖国平, 郭蔚, 董永春, 陈兴灿. 鲜茧与干茧生丝的结构与性能比较及其鉴别方法[J]. 纺织学报, 2019, 40(03): 32-38.
[11] 贾慧莹, 蒋志青, 马建伟, 江亮, 陈韶娟. 多巴胺氧化自聚改性聚四氟乙烯纤维制备及其性能[J]. 纺织学报, 2019, 40(01): 14-18.
[12] 王嘉欣 田秀枝 蒋学 王鸿博 高卫东. 二醛 β-环糊精/壳聚糖改性对涤纶织物亲水性能的影响[J]. 纺织学报, 2018, 39(07): 82-88.
[13] 颜东 邓继勇 汪南方 王连军. 有机硅改性聚氨酯/丙烯酸酯共聚乳液对棉织物的抗皱整理[J]. 纺织学报, 2018, 39(01): 89-93.
[14] 黄益 王权威 孟一丁 聂春玲 周岚 邵建中. 苎麻织物的柠檬酸/多元醇抗皱整理[J]. 纺织学报, 2017, 38(05): 104-109.
[15] 刘成霞 韩永华. 模拟实际着装的织物抗皱性测试方法[J]. 纺织学报, 2017, 38(03): 56-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!