纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 147-154.doi: 10.13475/j.fzxb.20230600901

• 服装工程 • 上一篇    下一篇

上躯干皮肤温度冷热变化与热量调节区划分

丁小蝶, 唐虹(), 高强, 张成蛟   

  1. 南通大学 纺织服装学院, 江苏 南通 226019
  • 收稿日期:2023-06-06 修回日期:2023-12-11 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 唐虹(1968—),女,教授,博士。主要研究方向为服装舒适性与功能研究。E-mail: tang.h@ntu.edu.cn
  • 作者简介:丁小蝶(1998—),女,硕士生。主要研究方向为服装舒适性与功能研究。

Cold and hot changes in upper torso skin temperature and division of heat regulation zones

DING Xiaodie, TANG Hong(), GAO Qiang, ZHANG Chengjiao   

  1. College of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2023-06-06 Revised:2023-12-11 Published:2024-05-15 Online:2024-05-31

摘要:

针对制冷与加热一体式服装中冷热调节区域设计问题,以皮肤温度为依据,探究人体受冷热环境影响上躯干各部位的冷热需求程度。分别测量冷与热2种环境下,青年男子在静坐、站立、步行、快走4种运动状态中上躯干不同区域的皮肤温度,分析各部位皮肤温度变化来判断人体局部区域的冷热情况,对皮肤温度变化值采用聚类分析来进行冷热调节区域的划分。结果表明:在冷环境下,人体上躯干皮肤温度在任一状态下侧胸、后肩温度均较低,且在静坐、站立阶段中明显低于人体平均皮肤温度;热环境下,任一状态下前肩、后肩温度均较高,前肩、后肩、中背明显高于人体平均皮肤温度,故侧胸、前肩及后肩等部位的冷热需求是功能服装设计的重点。

关键词: 皮肤温度, 运动状态, 上躯干皮肤区域划分, 人体热舒适性, 功能服装

Abstract:

Objective The upper torso is the part of the human body with the highest heat output, and the temperature changes in cold and hot environments greatly affect the thermal balance of the human body. In response to the design issue of the cold and hot regulation zone in the integrated refrigeration and heating clothing, this study explores the degree of cold and hot demand for various parts of the upper torso affected by the cold and hot environments of the human body using skin temperature as a key indicator.

Method The skin temperature of different zones of the upper torso of young men was measured in cold and hot environments in four different movement states, including sitting, standing, walking, and brisk walking. The distribution of human organs and the distribution of human sweating were adopted to divide the upper torso skin zone, and contact temperature sensors was adopted to continuously monitor the skin temperature. The changes in skin temperature of each part were analyzed to judge the cold and hot conditions of local areas, and cluster analysis was employed to classify the skin temperature changes.

Results By comparing the local temperature with the average skin temperature in the same environment and comparing the local skin temperature under the same movement state, it was seen that the distribution pattern of skin temperature in the upper torso of the human body in cold environments was studied and it showed that the average skin temperature of the human body demonstrated an overall decreasing tendency, with particularly significant changes in all four states. But the skin temperature of each part of the upper torso was decreasing and then increasing. During the sitting state, skin temperature in most zones was decreased significantly, and at this state, the temperature of side chest and back shoulder was generally significantly lower than the average skin temperature of the human body. At any states, the temperature of the side chest and back shoulder was at a lower level compared to other torso zones, which was lower than the thermal comfort temperature of the human body. Except for some zones close to the core organs of the human body, the skin temperature was relatively high and changes were relatively small. As the cooling time was increased, especially during the brisk walking state, the temperature change was decreased and the cold sensation gradually weakened. The distribution pattern of skin temperature in the upper torso of the human body under thermal environment showed that the overall skin temperature in various parts of the upper torso was similar to the average skin temperature of the human body, both of which was increased as experimental time got longer. The maximum temperate increase was observed at the sitting state, with temperature at the front shoulder, back shoulder, and middle back significantly becoming higher than the average skin temperature of the human body. At the same state, the temperature of all parts was generally higher, with the front and back shoulder being higher in any state and higher than the temperature of human thermal comfort. And the results obtained in the same environment and at movement state were consistent with the classification results obtained through cluster analysis. In addition, through comparison, it was found that the influence of the environment on skin temperature in various parts was much greater than that of the movement state. Therefore, it was necessary to focus on considering the impact of the environment on the local skin temperature of the human body.

Conclusion For the design of the cold and hot regulation zone in heating clothing, combined with the cold and hot situation in local zones of the human body and the results of cluster analysis, a heating device is adopted to focus on heating the side chest and back shoulder of the first level heating zone, so as to achieve local heat adjustment. For the design of the cold and hot regulation zone in refrigeration clothing, the refrigeration device is adopted to focus on cooling the front and back shoulders of the first level cooling zone. However, when designing the cold and hot temperature adjustment zone for clothing with both heating and cooling functions, it is necessary to comprehensively consider the degree of cold and hot demand in the side chest, front and back shoulders, and other zones.

Key words: skin temperature, movement state, division of upper torso shin zone, human thermal comfort, functional clothing

中图分类号: 

  • TS941.17

表1

受试者基本情况"

受试者编号 年龄/岁 身高/cm 体重/kg BMI
S1 23 176 62.0 20.0
S2 25 177 73.5 23.5
S3 23 175 65.0 21.2
S4 23 172 55.0 18.6
S5 22 170 61.0 21.1
S6 21 175 70.0 22.9
S7 20 181 78.0 23.8
S8 24 180 77.5 23.9
S9 22 182 72.5 21.9
S10 24 179 70.0 21.8

图1

气候室与休息室示意图"

图2

平均皮肤温度测试点"

图3

上躯干皮肤温度的划分"

图4

冷环境下局部温度与各部位皮肤温度的比较"

图5

热环境下局部温度与各部位皮肤温度的比较"

图6

不同状态下上躯干各部位皮肤温度变化情况"

表2

冷热环境下不同状态时各部位温度均值"

部位 冷环境皮肤温度/℃ 热环境皮肤温度/℃
静坐 站立 步行 快走 静坐 站立 步行 快走
前肩 34.00 33.53 33.68 33.80 35.62 36.56 36.63 36.43
侧胸 32.85 32.36 32.52 32.30 34.75 35.81 35.75 35.33
中胸 33.86 34.02 33.90 33.48 34.92 35.94 35.97 35.65
前腰 33.79 34.01 33.73 33.43 34.71 35.67 35.71 35.58
上腹 33.92 33.36 33.54 33.07 34.83 35.88 35.96 35.78
下腹 33.79 33.74 33.23 32.52 34.39 35.50 35.50 35.47
后肩 32.95 32.54 32.48 32.50 35.49 36.52 36.58 36.60
侧背 33.56 33.27 33.16 33.00 35.08 36.01 35.97 35.74
中背 33.78 33.90 33.66 33.51 35.54 36.42 36.37 36.13
后腰 33.99 33.85 33.63 33.03 34.59 35.82 35.88 35.82
下背 33.74 33.74 33.47 32.78 35.10 35.84 35.80 35.77

图7

不同环境下生成的树形图"

图8

各部位供冷热区示意图"

[1] 柯莹, 张海棠, 朱晓涵, 等. 电加热高空清洁作业服研制与性能评价[J]. 纺织学报, 2021, 42(8): 149-155.
KE Ying, ZHANG Haitang, ZHU Xiaohan, et al. Development and performance evaluation of electric heating high-altitude cleaning work clothes[J]. Journal of Textile Research, 2021, 42(8): 149-155.
[2] 吴国珊, 刘何清, 吴世先, 等. 不同环境下个体通风服的制冷量[J]. 纺织学报, 2021, 42(10): 139-145.
doi: 10.13475/j.fzxb.20200908507
WU Guoshan, LIU Heqing, WU Shixian, et al. The cooling capacity of individual ventilated clothing in different environments[J]. Journal of Textile Research, 2021, 42(10): 139-145.
doi: 10.13475/j.fzxb.20200908507
[3] 刘欣悦, 赵蒙蒙, 李宛玥. 基于管道排列的背心式液冷服研发与测评[J]. 上海纺织科技, 2023, 51(4): 10-15,19.
LIU Xinyue, ZHAO Mengmeng, LI Wanyue. Research and evaluation of vest style liquid cooled clothing based on pipeline arrangement[J]. Shanghai Textile Technology, 2023, 51(4): 10-15,19.
[4] 陈曦, 潘姝雯, 戴宏钦, 等. 缓解职业人员热应激用个体冷却服的研究进展[J]. 现代丝绸科学与技术, 2021, 36(4): 35-40.
CHEN Xi, PAN Shuwen, DAI Hongqin, et al. Research progress on individual cooling suits for alleviating heat stress in professionals[J]. Modern Silk Science and Technology, 2021, 36(4): 35-40.
[5] 范一强, 贺建芸, 刘士成, 等. 制冷与制热空调服的研究进展[J]. 纺织学报, 2018, 39(7): 174-180.
FAN Yiqiang, HE Jianyun, LIU Shicheng, et al. Research progress in refrigeration and heating air conditioning clothing[J]. Journal of Textile Research, 2018, 39(7): 174-180.
[6] DE DEAR R J, AKIMOTO T, ARENS E A, et al. Progress in thermal comfort research over the last twenty years[J]. Indoor Air, 2013, 23(6): 442-461.
doi: 10.1111/ina.12046 pmid: 23590514
[7] 张昭华, 陈之瑞, 李璐瑶, 等. 人体局部皮肤的气流敏感性及其影响因素[J]. 纺织学报, 2021, 42(12): 125-130,137.
doi: 10.13475/j.fzxb.20210400607
ZHANG Zhaohua, CHEN Zhirui, LI Luyao, et al. Air flow sensitivity of local human skin and its influencing factors[J]. Journal of Textile Research, 2021, 42(12): 125-130,137.
doi: 10.13475/j.fzxb.20210400607
[8] 周文, 郑晴, 柯莹. 相变降温军训服的设计开发与评价[J]. 毛纺科技, 2021, 49(2): 43-48.
ZHOU Wen, ZHENG Qing, KE Ying. Design, development and evaluation of phase change cooling military training uniforms[J]. Wool Textile Journal, 2021, 49(2): 43-48.
[9] 胡春华. 基于人体需求的相变纺织品的研究[D]. 天津: 河北科技大学, 2009: 31.
HU Chunhua. Research on phase change textiles based on human needs[D]. Tianjin: Hebei University of Science and Technology, 2009: 31.
[10] SONG W, WANG F, ZHANG C, et al. On the improvement of thermal comfort of university students by using electrically and chemically heated clothing in a cold classroom environment[J]. Building and Environment, 2015, 94: 704-713.
[11] 炉庆洪, 杨洪钦, 陈丽, 等. 正常青年体表温度分布的红外热像分析[J]. 中国生物医学工程学报, 2007, 26(4): 528-531.
LU Qinghong, YANG Hongqin, CHEN Li, et al. Infrared thermography analysis of body surface temperature distribution in normal young people[J]. Chinese Journal of Biomedical Engineering, 2007, 26(4): 528-531.
[12] ANGELOVA R A, GEORGIEVA E, MARKOV D, et al. Estimating the effect of torso clothing insulation on body skin and clothing temperatures in a cold environment using infrared thermography[J]. Fibres & Textiles in Eastern Europe, 2018, 4 (130): 122-129.
[13] 林强, 李同同, 满正行, 等. 一种基于SPECT成像的人体部位切分方法及系统: 202110252798.9[P]. 2021-06-11.
LIN Qiang, LI Tongtong, MAN Zhengxing, et al. A human part segmentation method and system based on SPECT imaging: 202110252798.9 [P]. 2021-06-11.
[14] 马惠敏, 张栋, 李顺月, 等. 正常人体背部温度分布及红外热像分析[J]. 生物医学工程与临床, 2006(4): 238-241.
MA Huimin, ZHANG Dong, LI Shunyue, et al. Temperature distribution and infrared thermal image analysis of normal human back[J]. Biomedical Engineering and Clinical, 2006(4): 238-241.
[15] ARENS E, ZHANG H, HUIZENGA C. Partial-and whole-body thermal sensation and comfort: part II: non-uniform environmental conditions[J]. Journal of Thermal Biology, 2006, 31(1/2): 60-66.
[16] 苗苗, 鲁虹, 程梦琪. 运动前后人体体表温度变化与主观热感觉评定[J]. 纺织学报, 2018, 39(4): 116-122.
MIAO Miao, LU Hong, CHENG Mengqi. Changes in human body surface temperature before and after exercise and subjective thermal sensation assess-ment[J]. Journal of Textile Research, 2018, 39(4): 116-122.
[17] 王冰洁. 青年男性上身出汗分布规律研究[D]. 上海: 东华大学, 2013:28-30.
WANG Bingjie. A study on the distribution pattern of upper body sweating in young men[D]. Shanghai: Donghua University, 2013: 28-30.
[1] 柯莹, 林磊, 郑晴, 王宏付. 电加热服加热区域分布对人体热舒适感的影响[J]. 纺织学报, 2024, 45(04): 188-194.
[2] 范居乐, 张玉泽, 汪军. 动态牵伸过程中浮游纤维变速点分布模拟[J]. 纺织学报, 2024, 45(03): 44-48.
[3] 朱圆圆, 覃蕊, 金佳勤, 雷彧腾, 于淼. 基于ANSYS的人体下肢服装压虚拟仿真预测[J]. 纺织学报, 2024, 45(03): 148-155.
[4] 程子琪, 卢业虎, 许静娴. 电热织物系统热传递模拟及其参数设计[J]. 纺织学报, 2024, 45(02): 206-213.
[5] 刘雨婷, 宋泽涛, 赵胜男, 王星岚, 常素芹. 个体冷却服的研究现状与发展趋势[J]. 纺织学报, 2023, 44(12): 233-241.
[6] 苗雪, 王永进, 王方明. 充气保暖复合面料厚度与热阻的相关性分析[J]. 纺织学报, 2023, 44(11): 176-182.
[7] 杜吉辉, 苏云, 刘广菊, 田苗, 李俊. 智能防寒手套温控系统设计及热舒适性研究[J]. 纺织学报, 2023, 44(04): 172-178.
[8] 陈莹, 宋泽涛, 郑晓慧, 姜延, 常素芹. 蒸发型降温服的降温性能研究[J]. 纺织学报, 2022, 43(11): 141-147.
[9] 马亮, 李俊. 多种智能技术在防寒服装功能研发中的应用进展[J]. 纺织学报, 2022, 43(06): 206-214.
[10] 张昭华, 陈之瑞, 李璐瑶, 肖平, 彭浩然, 张钰涵. 人体局部皮肤的气流敏感性及其影响因素[J]. 纺织学报, 2021, 42(12): 125-130.
[11] 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150.
[12] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[13] 黄倩倩, 李俊. 环境温度突变时人体热感觉变化机制研究进展[J]. 纺织学报, 2020, 41(04): 188-194.
[14] 郑晴, 王宏付, 柯莹, 李爽. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(03): 124-129.
[15] 陈晓娜, 王二会. 文胸钢圈对乳房竖直位移的影响[J]. 纺织学报, 2019, 40(07): 133-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!