纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 218-227.doi: 10.13475/j.fzxb.20221203002
冯颖, 于汉哲, 张宏, 李可心, 马标, 董鑫(), 张建伟
FENG Ying, YU Hanzhe, ZHANG Hong, LI Kexin, MA Biao, DONG Xin(), ZHANG Jianwei
摘要:
为提高壳聚糖的可纺性,改善壳聚糖基纳米纤维的物理形态和力学性能,对国内外利用静电纺丝技术制备壳聚糖基纳米纤维的相关研究进行了综述。介绍了壳聚糖静电纺丝液的配制要求以及不同纺丝参数对纤维形态的影响;在此基础上,详细综述了壳聚糖化学改性纳米纤维和壳聚糖共混改性纳米纤维的研究进展;最后,对应用壳聚糖基纳米纤维处理废水中重金属离子、染料和其它污染物的研究现状进行总结。研究发现:不同纺丝参数最终均是通过影响射流拉伸的难易程度来改变纤维形态,且通过化学改性和共混改性的方法不仅可提高壳聚糖的可纺性,还可增强壳聚糖基纳米纤维的耐酸性、热稳定性、抗菌性和吸附性;同时指出探寻新的溶剂、共混剂和功能材料以及与选择性分离技术结合来增强对水中污染物的吸附能力是壳聚糖基纳米纤维的未来发展趋势。
中图分类号:
[1] | 刘雷艮, 沈忠安, 洪剑寒. 静电纺高效防尘复合滤料的制备及其性能[J]. 纺织学报, 2015, 36(7): 12-16. |
LIU Leigen, SHEN Zhongan, HONG Jianhan. Preparation and properties of electrostatic spinning efficient dust proof composite filter material[J]. Journal of Textile Research, 2015, 36(7): 12-16. | |
[2] | GAO Q, WANG J, LIU J, et al. High mechanical performance based on the alignment of cellulose nanocrystal/chitosan composite filaments through continuous coaxial wet spinning[J]. Cellulose, 2021, 28(12): 7995-8008. |
[3] | YOU Y, XIAO C, HUANG Q, et al. Study on poly (tetrafluoroethylene-co-hexafluoropropylene) hollow fiber membranes with surface modification by a chemical vapor deposition method[J]. RSC Advances, 2018, 8(1): 102-110. |
[4] | CHRIST H A, MENZEL H. Electrospinning and photorosslinking of highly modified fungal chitosan[J]. Macromolecular Materials & Engineering, 2022. DOI: 10.1002/mame.202200430. |
[5] | 张显华, 冯向伟, 陈莉娜, 等. TSF/CS 复合纳米纤维的制备及后处理研究[J]. 上海纺织科技, 2019, 47(12):82-84,88. |
ZHANG Xianhua, FENG Xiangwei, CHEN Lina, et al. Study on preparation and post-treatment of TSF/CS composite nanofibers[J]. Shanghai Textile Science & Technology, 2019, 47(12):82-84,88. | |
[6] |
LI C, LOU T, YAN X, et al. Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal[J]. International Journal of Biological Macromolecules, 2018, 106: 768-774.
doi: S0141-8130(17)32631-4 pmid: 28818720 |
[7] | GENG X, KWON O H, JANG J. Electrospinning of chitosan dissolved in concentrated acetic acid solu-tion[J]. Biomaterials, 2005, 26(27): 5427-5432. |
[8] |
SANGSANOH P, SUPAPHOL P. Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions[J]. Biomacromolecules, 2006, 7(10): 2710-2714.
pmid: 17025342 |
[9] | CHEN L, LIU Z, SHI J, et al. Preparation and antibacterial properties of chitosan/polyvinyl alcohol nanofibrous mats using different organic acids as solvents[J]. Process Biochemistry, 2022. DOI: 10.1016/j.procbio.2022.08.025. |
[10] | VAN-PHAM D T, QUYEN T T B, VAN-TOAN P, et al. Temperature effects on electrospun chitosan nanofibers[J]. Green Processing and Synthesis, 2020, 9(1): 488-495. |
[11] | MAZOOCHI T, JABBARI V. Chitosan nanofibrous scaffold fabricated via electrospinning: the effect of processing parameters on the nanofiber morphology[J]. International Journal of Polymer Analysis and Characterization, 2011, 16(5): 277-289. |
[12] | THIRUGNANASAMBANDHAM K, SIVAKUMAR V. Preparation of chitosan based nanofibers: optimization and modeling[J]. International Journal of Chemical Reactor Engineering, 2016, 14(1): 283-288. |
[13] | PEZESHKI-MODARESS M, ZANDI M, MIRZADEH H. Fabrication of gelatin/chitosan nanofibrous scaffold: process optimization and empirical modeling[J]. Polymer International, 2015, 64(4): 571-580. |
[14] | TSOU S Y, LIN H S, WANG C. Studies on the electrospun nylon 6 nanofibers from polyelectrolyte solutions: 1: effects of solution concentration and temperature[J]. Polymer, 2011, 52(14): 3127-3136. |
[15] | 孙玮, 黄靓靓, 张佩华. 壳聚糖纺丝液性能对静电纺纤维形态的影响[J]. 产业用纺织品, 2021, 39(5): 28-31,37. |
SUN Wei, HUANG Liangliang, ZHANG Peihua. Effect of chitosan spinning solution on morphology of electrostatic spinning fibers[J]. Technical Textiles, 2021, 39(5): 28-31, 37. | |
[16] |
DOBROVOLSKAYA I P, YUDIN V E, POPRYADUKHIN P V, et al. Effect of chitin nanofibrils on electrospinning of chitosan-based composite nanofibers[J]. Carbohydrate Polymers, 2018, 194: 260-266.
doi: S0144-8617(18)30339-4 pmid: 29801838 |
[17] | YANG G Z, LI H P, YANG J H, et al. Influence of working temperature on the formation of electrospun polymer nanofibers[J]. Nanoscale Research Letters, 2017, 12(1): 1-10. |
[18] | FENG Z Q, LEACH M K, CHU X H, et al. Electrospun chitosan nanofibers for hepatocyte culture[J]. Journal of Biomedical Nanotechnology, 2010, 6(6): 658-666. |
[19] | 王良安, 庄旭品, 晁贵群, 等. 精氨酸改性壳聚糖纳米纤维膜的制备及其BSA亲和吸附性能研究[J]. 山东纺织科技, 2016, 57(6): 1-5. |
WANG Liangan, ZHUANG Xupin, CHAO Guiqun, et al. Preparation of chitosan nanofiber membrane modified by arginine and its BSA affinity and adsorption proper-ties[J]. Shandong Textile Science & Technology, 2016, 57(6): 1-5. | |
[20] | ZIA Q, TABASSUM M, UMAR M, et al. Cross-linked chitosan coated biodegradable porous electrospun membranes for the removal of synthetic dyes[J]. Reactive & Functional Polymers, 2021. DOI: 10.1016/j.reactfunctpolym.2021.104995. |
[21] | XUE C, WILSON L D. Preparation and characterization of salicylic acid grafted chitosan electrospun fibers[J]. Carbohydrate Polymers, 2022. DOI: 10.1016/j.carbpol.2021.118751. |
[22] |
CHEAH W Y, SHOW P L, NG I S, et al. Antibacterial activity of quaternized chitosan modified nanofiber membrane[J]. International Journal of Biological Macromolecules, 2019, 126: 569-577.
doi: S0141-8130(18)36493-6 pmid: 30584947 |
[23] |
LI C, LUO X, LI L, et al. Carboxymethyl chitosan-based electrospun nanofibers with high citral-loading for potential anti-infection wound dressings[J]. International Journal of Biological Macromolecules, 2022, 209: 344-355.
doi: 10.1016/j.ijbiomac.2022.04.025 pmid: 35413309 |
[24] | THIRUGNANASAMBANDHAM K, SIVAKUMAR V. Preparation of chitosan based nanofibers: optimization and modeling[J]. International Journal of Chemical Reactor Engineering, 2016, 14(1): 283-288. |
[25] |
汪希铭, 程凤, 高晶, 等. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
doi: 10.13475/j.fzxb.20200203306 |
WANG Ximing, CHENG Feng, GAO Jing, et al. Effect of crosslinking modification on properties of chitosan/polyvinyl oxide nanofiber membrane for dressing[J]. Journal of Textile Research, 2020, 41(12): 31-36.
doi: 10.13475/j.fzxb.20200203306 |
|
[26] | 杨梅, 孙润军, 王红红. 静电纺壳聚糖/PVA 纳米纤维膜对甲基橙的吸附特性[J]. 合成纤维, 2019 (1): 15-20. |
YANG Mei, SUN Runjun, WANG Honghong. Adsorption properties of methyl orange on electrospun chitosan/PVA nanofiber membranes[J]. Synthetic Fiber in China, 2019(1): 15-20. | |
[27] | MOHRAZ M H, GOLBABAEI F, YU I J, et al. Preparation and optimization of multifunctional electrospun polyurethane/chitosan nanofibers for air pollution control applications[J]. International Journal of Environmental Science & Technology, 2019, 16(2): 681-694. |
[28] | ZHANG R Y, ZASLAVSKI E, VASILYEV G, et al. Tunable pH-responsive chitosan-poly(acrylic acid) electrospun fibers[J]. Biomacromolecules, 2018, 19(2): 588-595. |
[29] | JAMSHIDIFARD S, KOUSHKBAGHI S, HOSSEINI S, et al. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb (II), Cd (II) and Cr (VI) ions from aqueous solutions[J]. Journal of Hazardous Materials, 2019, 368: 10-20. |
[30] |
SURUCU S, SASMAZEL H T. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds[J]. International Journal of Biological Macromolecules, 2016, 92: 321-328.
doi: S0141-8130(16)30729-2 pmid: 27387013 |
[31] | LEE D, CHEN D W C, CHIU S F, et al. Electrospun nanofibrous polylactide/chitosan mats for the filtration of silver ions[J]. Textile Research Journal, 2015, 85(4): 346-355. |
[32] | SOMSAP J, KANJANAPONGKUL K, TEPSORN R. Effect of parameters on the morphology and fibre diameters of edible electrospun chitosan-cellulose acetate-gelatin hybrid nanofibres[C]// 2nd International Conference on Electronic Information Technology and Computer Engineering. Shanghai: Shanghai University of Engineering Science, 2018. DOI:10.1051/matecconf/201819203038. |
[33] | ZHANG Y, WANG F, WANG Y. Electrospun cellulose acetate/chitosan fibers for humic acid removal: construction guided by intermolecular interaction study[J]. ACS Applied Polymer Materials, 2021, 3(10): 5022-5029. |
[34] | PHAN D N, LEE H, HUANG B, et al. Fabrication of electrospun chitosan/cellulose nanofibers having adsorption property with enhanced mechanical property[J]. Cellulose, 2019, 26(3): 1781-1793. |
[35] | DEVARAYAN K, HANAOKA H, HACHISU M, et al. Direct electrospinning of cellulose-chitosan composite nanofiber[J]. Macromolecular Materials and Engineering, 2013, 298(10): 1059-1064. |
[36] | CHEN Z, MO X, QING F. Electrospinning of collagen-chitosan complex[J]. Materials Letters, 2007, 61(16): 3490-3494. |
[37] | CAI Z, MO X, ZHANG K, et al. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications[J]. International Journal of Molecular Sciences, 2010, 11(9): 3529-3539. |
[38] | 卢丽萍, 王芳芳, 吴敏. 聚乙烯醇/壳聚糖/硝酸铈共混纤维毡的制备及其对 Cr (Ⅵ) 的吸附性能[J]. 纺织学报, 2012, 33(5): 15-19. |
LU Liping, WANG Fangfang, WU Min. Preparation of polyvinyl alcohol/chitosan/cerium nitrate blended fiber mat and its adsorption properties for Cr(Ⅵ)[J]. Journal of Textile Research, 2012, 33(5): 15-19. | |
[39] | LI Y, LI M, ZHANG J, et al. Adsorption properties of the double-imprinted electrospun crosslinked chitosan nanofibers[J]. Chinese Chemical Letters, 2019, 30(3): 762-766. |
[40] | SABOURIAN V, EBRAHIMI A, NASERI F, et al. Fabrication of chitosan/silica nanofibrous adsorbent functionalized with amine groups for the removal of Ni (II), Cu (II) and Pb (II) from aqueous solutions: Batch and column studies[J]. RSC Advances, 2016, 6(46): 40354-40365. |
[41] | NAJAFABADI H H, IRANI M, RAD L R, et al. Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent[J]. RSC Advances, 2015, 5(21): 16532-16539. |
[42] | SHARIFUL M I, SHARIF S B, LEE J J L, et al. Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly(ethylene oxide) nanofibrous membrane[J]. Carbohydrate Polymers, 2017, 157: 57-64. |
[43] |
CHRISTOU C, PHILIPPOU K, KRASIA-CHRISTOFOROU T, et al. Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers[J]. Carbohydrate Polymers, 2019, 219: 298-305.
doi: S0144-8617(19)30544-2 pmid: 31151529 |
[44] |
LI C Y, LOU T, YAN X, et al. Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal[J]. International Journal of Biological Macromolecules, 2018, 106: 768-774.
doi: S0141-8130(17)32631-4 pmid: 28818720 |
[45] | HOSSEINI S A, VOSSOUGHI M, MAHMOODI N M. Preparation of electrospun affinity membrane and cross flow system for dynamic removal of anionic dye from colored wastewater[J]. Fibers and Polymers, 2017, 18(12): 2387-2399. |
[46] | HOSSEINI S A, VOSSOUGHI M, MAHMOODI N M, et al. Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles[J]. Journal of Cleaner Production, 2018, 183: 1197-1206. |
[47] | DOTTO G L, SANTOS J M N, TANABE E H, et al. Chitosan/polyamide nanofibers prepared by Forcespinning® technology: a new adsorbent to remove anionic dyes from aqueous solutions[J]. Journal of Cleaner Production, 2017, 144: 120-129. |
[48] | ZABIHISAHEBI A, KOUSHKBAGHI S, PISHNAMAZI M, et al. Synthesis of cellulose acetate/ chitosan/ SWCNT/Fe3O4/TiO2 composite nanofibers for the removal of Cr (VI), As (V), methylene blue and Congo red from aqueous solutions[J]. International Journal of Biological Macromolecules, 2019, 140: 1296-130. |
[49] | PARADIS-TANGUAY L, CAMIRÉ A, RENAUD M, et al. Sorption capacities of chitosan/polyethylene oxide (PEO) electrospun nanofibers used to remove ibuprofen in water[J]. Journal of Polymer Engineering, 2019, 39(3): 207-215. |
[50] | DOAN H N, VO P P, BAGGIO A, et al. Environmentally friendly chitosan-modified polycaprolactone nanofiber/nanonet membrane for controllable oil/water separation[J]. ACS Applied Polymer Materials, 2021, 3(8): 3891-3901. |
[51] | RABANIMEHR F, FARHADIAN M, NAZAR A R S. A high-performance microreactor integrated with chitosan/Bi2WO6/CNT/TiO2 nanofibers for adsorptive/photocatalytic removal of cephalexin from aqueous solution[J]. International Journal of Biological Macromolecules, 2022, 208: 260-274. |
[52] | ABDOLMALEKI A Y, ZILOUEI H, KHORASANI S N, et al. Adsorption of tetracycline from water using glutaraldehyde-crosslinked electrospun nanofibers of chitosan/poly (vinyl alcohol)[J]. Water Science and Technology, 2018, 77(5): 1324-1335. |
[53] | NIRAGIRE H, KEBEDE T G, DUBE S, et al. Chitosan-based electrospun nanofibers mat for the removal of acidic drugs from influent and effluent[J]. Chemical Engineering Communications, 2022(9): 1-23. |
[54] | NTHUMBI R M, NGILA J C, MOODLEY B, et al. Application of chitosan/polyacrylamide nanofibres for removal of chromate and phosphate in water[J]. Physics and Chemistry of the Earth: Parts A/B/C, 2012, 50: 243-251. |
[1] | 郑康, 龚文丽, 鲍杰, 刘琳. 两性纤维素多孔凝胶球的制备及其动态吸附性能[J]. 纺织学报, 2024, 45(05): 102-112. |
[2] | 李方, 张怡立, 王曼, 孟祥周, 沈忱思. 锑污染物对绿藻及蓝藻的急性毒性效应[J]. 纺织学报, 2024, 45(04): 169-179. |
[3] | 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75. |
[4] | 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113. |
[5] | 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147. |
[6] | 范博, 吴伟, 王健, 徐红, 毛志平. 分散染料在超临界CO2流体染色聚酯纤维中的扩散行为[J]. 纺织学报, 2024, 45(02): 134-141. |
[7] | 杨美慧, 李博, 沈艳琴, 武海良. 再生角蛋白凝胶对纺织退浆废水中浆料分子的吸附性能[J]. 纺织学报, 2024, 45(02): 142-152. |
[8] | 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188. |
[9] | 葛怀富, 吴伟, 王健, 徐红, 毛志平. 5-(二甲氨基)-2-甲基-5-氧戊酸甲酯在超临界二氧化碳流体染色中的应用[J]. 纺织学报, 2024, 45(01): 120-127. |
[10] | 颜素崟, 周丽春, 郑庭, 金福江. 蒽醌型染料分子羟基最优取代位置的多目标优化设计方法[J]. 纺织学报, 2024, 45(01): 128-135. |
[11] | 寿晨超, 娜仁高娃, 高素芸, 刘剑, 赵丰. 天然染料质谱数据库的建立与应用[J]. 纺织学报, 2023, 44(11): 120-131. |
[12] | 黄彪, 郑莉娜, 秦妍, 程羽君, 李成才, 朱海霖, 刘国金. 多孔型TiO2微粒的制备及其对离子型染料的吸附[J]. 纺织学报, 2023, 44(11): 167-175. |
[13] | 姜绍华, 梁帅童, 裴刘军, 张红娟, 王际平. 基于概率密度函数的织物染色侵入动力学分析[J]. 纺织学报, 2023, 44(10): 90-97. |
[14] | 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133. |
[15] | 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157. |
|