纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 228-238.doi: 10.13475/j.fzxb.20221105502

• 综合述评 • 上一篇    下一篇

智能背景下机器学习在柔性应变传感器中的应用研究进展

卢妍1,2, 洪岩1,2, 方剑1,2()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
    2.苏州大学 现代丝绸国家工程实验室, 江苏 苏州 215123
  • 收稿日期:2023-01-08 修回日期:2023-06-07 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 方剑(1980—),男,特聘教授,博士。主要研究方向为电活性纤维材料和智能可穿戴纺织品。E-mail:jian.fang@suda.edu.cn。
  • 作者简介:卢妍(1999—),女,硕士生。主要研究方向为智能可穿戴纺织品。
  • 基金资助:
    国家重点研发计划项目(2022YFB3805800);国家自然科学基金面上项目(52173059);江苏省高校自然科学研究项目重大项目(21KJA540002)

Research progress on applications of machine learning in flexible strain sensors in context of material intelligence

LU Yan1,2, HONG Yan1,2, FANG Jian1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2023-01-08 Revised:2023-06-07 Published:2024-05-15 Online:2024-05-31

摘要:

为深入研究智能纺织品中柔性应变传感器的发展,探讨了其在检测人体运动轨迹、力学/声学特征以及各类生理指标信息方面的应用,着重阐述了机器学习在提升整个柔性应变传感系统性能方面的作用。通过系统综述最新研究进展,旨在深化对机器学习在基于智能纺织品的柔性应变传感器领域应用的理解。介绍了几种常见柔性应变传感器的原理结构和相关研究,并概述了与柔性应变传感器阵列相结合的先进机器学习算法;系统分析了基于智能纺织品的柔性应变传感器结合机器学习在不同领域中的最新研究,强调了在柔性应变传感器中使用机器学习的益处;最后针对基于智能纺织品的柔性应变传感器结合机器学习的应用所面临的挑战以及如何提升整个传感系统的实用性进行展望,以期能够推动机器学习在柔性智能可穿戴领域的广泛应用,从而进一步推动智能材料与智能纺织品的发展。

关键词: 柔性应变传感器, 机器学习, 信号处理, 智能纺织品, 智能材料

Abstract:

Significance Because of the rapid progress and growth of smart materials and smart textiles, increasing attention hasbeen focused on the research, development, and optimization of flexible strain sensors. Flexible strain sensors for smart textiles are capable of detecting the precise motion trajectory of the human body, mechanical-acoustic characteristics, and information on various physiological indicators. With the continuous optimization of the performance of flexible strain sensors, the flexible sensor devices need to achieve the acquisition and analysis of high-dimensional and high-frequency complex superimposed signals in very complex application environments, which in turn puts forward higher requirements for data processing algorithms. The implementation of machine learning, a more advanced method, has significantly contributed to the improvement in the overall performance of the flexible strain sensing system. This paper presents a systematic review of the research progress of flexible strain sensors based on smart textiles combined with machine learning. The goal of the review is to understand and broaden the application of machine learning in the field of flexible strain sensors.

Progress This paper firstly made an in-depth analysis of the fundamental structure and previous research on a variety of conventional flexible strain sensors such as piezoresistive, piezoelectric, capacitive, optical, magnetic, and triboelectric. In addition, this paper introduced the workflow of machine learning, which can be divided into the following four main steps: data preprocessing, machine learning and model training, model evaluation, and prediction of new data. According to the learning method, machine learning can be classified into supervised learning, unsupervised learning, reinforcement learning, and a mixture of the above three types. This paper then paper provided a detailed description of the information processing process of flexible strain sensors based on machine learning, as well as summarized the advantages and disadvantages of some typical machine learning algorithms for time-frequency analysis, dimensionality reduction, and classification. Furthermore, this paper analyzed the most recent research on flexible strain sensors based on smart textiles combined with machine learning in the fields of healthcare, life assistance, communication and exchange, as well as teaching and entertainment, which placed a significant amount of emphasis on the benefits that can be gained from utilizing machine learning in flexible strain sensors. In the field of healthcare, flexible strain sensing systems can continuously track various mechanical and acoustic features of the human body by combining with specific machine learning algorithms, which can help users to understand their own health status in real time, and thus achieve the purpose of health monitoring. Secondly, in the field of life assistance, the large amount of information provided by the machine learning-based strain sensing system can help in the design of bionic hearing, touch, and prosthetic manipulator, which can greatly improve the convenience of life for the disabled and the blind. Moreover, free-life monitoring by flexible strain sensing systems has the potential advantage of accurately detecting and measuring clinically relevant features, including fall risk and abnormal gait, so that abnormal movement symptoms of the elderly can be detected in a timely manner, which can ensure the safety of the elderly's life to a considerable extent. In the field of communication and exchange, the application of flexible strain sensors based on machine learning can improve the recognition performance of various features, such as sign language recognition, micro-expression detection, and perceptual interaction, thus facilitating human-to-human communication. In addition, the strain sensing system combined with specific machine learning algorithms enriches the application of smart textiles in teaching and entertainment scenarios, which improves the teaching efficiency and enhances the fun of teaching at the same time, and the application in gaming and entertainment greatly enriches people's lives.

Conclusion and Prospect Flexible strain sensors have excellent characteristics, such as high sensitivity, high resolution, and good elasticity. With the help of new sensor structures, new sensitive materials, and cutting-edge machine learning algorithms, smart textiles have been of great value in a variety of different fields. However, in the context of material intelligence, the research on flexible strain sensors based on smart textiles is still in its infancy and still faces many challenges, such as the fact that researchers have carried out little research on the optimal design of flexible strain sensor arrays, that it is difficult to simulate real human touch with flexible strain sensors designed according to existing technologies, and that the process of human pose recognition with flexible strain sensor systems can easily cause confusion in the recognition system. In a word, there is no doubt that machine learning has evolved into a valuable tool in the realm of smart wearables. It is believed that in the near future, with the continuous development of computer science and computing methods, machine learning will play a huge application value in various aspects such as the research and development of smart textile materials, process improvement, device performance evaluation, signal transmission, data processing, etc., and will further promote the intelligent development of the whole material field.

Key words: flexible strain sensor, machine learning, signal processing, smart textile, smart material

中图分类号: 

  • TP212

图1

机器学习的工作流程"

图2

柔性应变传感器的信息处理流程"

表1

用于时频分析和降维以及分类的机器学习算法的优缺点"

用途 算法 优点 缺点 参考文献
时频分析 傅里叶变换(FT) 可解释时域难以解释的滤波问题;可将线性时不变(LTI)系统分析问题中的卷积积分运算简化为乘积运算 无法实现时频联合分析 [36]
希尔伯特-黄
变换(HHT)
能分析非线性非平稳信号,且具有完全自适应性;不受海森堡测不准原理制约——适合突变信号 在经验模态分解(EMD)过程中会产生最终效应和模混合 [37]
小波变换(WT) 能够以自适应分辨率在时域和频域中提取和分析信息 容易受到噪声频率分布变化的影响 [38]
时间序列分析(TSA) 简单易行,便于掌握 准确性差,一般只适用于短期预测 [39]
降维 主成分分析(PCA) 减少了事件驱动应用中传感器节点或簇头的缓冲区溢出,避免了拥塞问题 当PCA的因子负荷的符号有正有负时,综合评价函数意义就不明确;命名清晰性低 [40]
独立成分分析(ICA) 可消除高阶依赖关系 幅值、分离信号的排列具有不确定性 [41]
因子分析(FA) 能很好地涵盖原始数据的各个项,同时将分析过程简化为因子项的分析 只能面对综合性的评价,同时对数据的数据量和成分有一定要求,需要先进行比较变量间简单相关系数(KOM)检测数据是否可以运用此方法 [42]
自编码器(AE) 可增强神经网络模型的学习能力 该方法的性能很大程度上取决于数据的质量,可能无法处理对于带有噪声数据的极端情况 [43]
分类 决策树(DT) 透明,减少决策中的歧义,并允许进行全面的分析;测试数据集时,运行速度比较快,能够在大型数据源上实现切实可行、效果较好的结果 易发生过拟合、忽略数据集中属性的相互关联 [44]
层次聚类分析(HCA) 无需预先知道聚类的数量,且易于实现 算法的时间复杂度大、不可逆性;聚类终止的条件具有不精确性 [45]
偏最小二乘判别分析
(PLS-DA)
具有多功能性,可用于预测和描述建模以及判别变量选择 需要优化大量参数才能获得可靠和有效的结果 [46]
支持向量机(SVM) 通过非线性映射将低维非线性函数映射到高维空间,无需知道非线性映射的具体形式 核函数的选择是该方法研究的核心问题,目前缺乏有效的方法来选择核函数 [47]
人工神经网络(ANN) 擅于分类复杂和非线性的数据集,且对输入没有限制;算法可以快速调整以适应新的问题 对计算量的要求较高 [48]
[1] LIU K, TEBYETEKERWA M, JI D, et al. Intelligent Materials[J]. Matter, 2020, 3(3): 590-593.
[2] 方剑, 任松, 张传雄, 等. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(9): 1-9.
FANG Jian, REN Song, ZHANG Chuanxiong, et al. Electroactive fibrous materials for intelligent wearable textiles[J]. Journal of Textile Research, 2021, 42(9): 1-9.
[3] 房翔敏, 曲丽君, 田明伟. 自供电纺织基柔性应变传感器研究进展[J]. 丝绸, 2022, 59(8): 36-47.
FANG Xiangmin, QU Lijun, TIAN Mingwei. Research progress of self-powered textile-based flexible stress sensors[J]. Journal of Silk, 2022, 59(8): 36-47.
[4] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(5): 168-177.
TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers[J]. Journal of Textile Research, 2021, 42(5): 168-177.
[5] WANG Y, ZHU L, MEI D, et al. A highly flexible tactile sensor with an interlocked truncated sawtooth structure based on stretchable graphene/silver/silicone rubber composites[J]. Journal of Materials Chemistry C, 2019, 7(28): 8669-8679.
[6] WIEDERHOLD G, MCCARTHY J. Arthur samuel: pioneer in machine learning[J]. IBM Journal of Research and Development, 1992, 36(3): 329-331.
[7] CAI G, WANG J, QIAN K, et al. Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection[J]. Advanced Science, 2017. DOI: 10.1002/advs.201600190.
[8] SURESH KUMAR V, KRISHNAMOORTHI C. Development of electrical transduction based wearable tactile sensors for human vital signs monitor: fundamentals, methodologies and applications[J]. Sensors and Actuators A: Physical, 2021. DOI: 10.1016/j.sna.2021.112582.
[9] HUANG J, LI D, ZHAO M, et al. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors[J]. Chemical Engineering Journal, 2019, 373: 1357-1366.
[10] PUNEETHA P, MALLEM S P R, LEE Y W, et al. Strain-controlled flexible graphene/GaN/PDMS sensors based on the piezotronic effect[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36660-36669.
[11] QIU A, JIA Q, YU H, et al. Highly sensitive and flexible capacitive elastomeric sensors for compressive strain measurements[J]. Materials Today Communications, 2021, 26: 1-11.
[12] GUO J, ZHOU B, ZONG R, et al. Stretchable and highly sensitive optical strain sensors for human-activity monitoring and healthcare[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 33589-33598.
[13] TANG X, MIAO Y, CHEN X, et al. A flexible and highly sensitive inductive pressure sensor array based on ferrite films[J]. Sensors (Basel), 2019, 19(10): 1-12.
[14] MA S, TANG J, YAN T, et al. Performance of flexible strain sensors with different transition mechanisms: a review[J]. IEEE Sensors Journal, 2022, 22(8): 7475-7498.
[15] FIORILLO A S, CRITELLO C D, PULLANO S A. Theory, technology and applications of piezoresistive sensors: a review[J]. Sensors and Actuators A: Physical, 2018, 281: 156-175.
[16] MITSUHIRO Shikidaa T S, KAZUO Satob, KOICHI Itoigawa. Active tactile sensor for detecting contact force and hardness of an object[J]. Sensors and Actuators A (Physical), 2003, 103(1/2): 213-218.
[17] PARK K I, SON J H, HWANG G T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates[J]. Advanced Materials, 2014, 26(16): 2514-2520.
[18] MAKIHATA M, MUROYAMA M, TANAKA S, et al. Design and fabrication technology of low profile tactile sensor with digital interface for whole body robot skin[J]. Sensors (Basel), 2018. DOI: 10.3390/s18072374.
[19] 赵利端, 刘丽妍, 何崟, 等. 基于碳纳米管的柔性应变传感器研究进展[J]. 材料科学与工程学报, 2022, 40(5): 883-889,908.
ZHAO Liduan, LIU Liyan, HE Yin, et al. Research progress on carbon nanotube flexible sensors[J]. Journal of Materials Science & Engineering, 2022, 40(5): 883-889,908.
[20] CHEN T, QIAO X, WEI P, et al. Tough gel-fibers as strain sensors based on strain-optics conversion induced by anisotropic structural evolution[J]. Chemistry of Materials, 2020, 32(22): 9675-9687.
[21] YANG H, FU J, CAO R, et al. A liquid lens-based optical sensor for tactile sensing[J]. Smart Materials and Structures, 2022. DOI: 10.1088/1361-665x/ac4d64.
[22] CHI C, SUN X, XUE N, et al. Recent progress in technologies for tactile sensors[J]. Sensors (Basel), 2018, 18(4): 1-29.
[23] TAO J, BAO R, WANG X, et al. Self-powered tactile sensor array systems based on the triboelectric effect[J]. Advanced Functional Materials, 2018. DOI: 10.1002/adfm.201806379.
[24] YANG H L, XIE X Z, KADOCH M. Machine learning techniques and a case study for intelligent wireless networks[J]. IEEE Network, 2020, 34(3): 208-215.
[25] JORDAN M I, MITCHELL T M. Machine learning:trends, perspectives, and prospectsing of nano-fibres[J]. Science, 2015, 349(6245): 255-260.
[26] WANG M, CUI Y, WANG X, et al. Machine learning for networking: workflow, advances and opportuni-ties[J]. IEEE Network, 2018, 32(2): 92-99.
[27] DUAN L, CUI S, QIAO Y, et al. Clustering based on supervised learning of exemplar discriminative information[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(12): 5255-5270.
[28] NIKBAKHT R, JONSSON A, LOZANO A. Unsupervised learning for parametric optimization[J]. IEEE Communications Letters, 2021, 25(3): 678-681.
[29] MATSUO Y, LECUN Y, SAHANI M, et al. Deep learning, reinforcement learning, and world models[J]. Neural Networks, 2022. DOI: 10.1016/j.neunet.2022.03.037.
[30] LIU Z, HUANG S, JIN W, et al. Broad learning system for semi-supervised learning[J]. Neurocomputing, 2021, 444: 38-47.
[31] WU J, SHENG V S, ZHANG J, et al. Multi-label active learning algorithms for image classification: overview and future promise[J]. ACM Computing Surveys, 2020. DOI: 10.1145/3379504.
[32] MANIA H, JORDAN M I, RECHT B. Active learning for nonlinear system identification with guarantees[J]. Journal of Machine Learning Research, 2022, 23(32): 1-30.
[33] DEN HENGST F, FRANçOIS-LAVET V, HOOGENDOORN M, et al. Planning for potential: efficient safe reinforcement learning[J]. Machine Learning, 2022, 111(6): 2255-2274.
[34] SHIRMOHAMMADLI V, BAHREYNI B. Machine learning for sensing applications: a tutorial[J]. IEEE Sensors Journal, 2022, 22(11): 10183-10195.
[35] JEON H, JUNG Y, LEE S, et al. Area-efficient short-time fourier transform processor for time-frequency analysis of non-stationary signals[J]. Applied Sciences, 2020. DOI: 10.3390/app10207208.
[36] HIRSCHBERG V, RODRIGUE D. Fourier trans-form (ft) analysis of the stress as a tool to follow the fatigue behavior of metals[J]. Applied Sciences, 2021, 11(8): 1-15.
[37] JI Y, WANG H. A revised Hilbert-Huang transform and its application to fault diagnosis in a rotor system[J]. Sensors (Basel), 2018. DOI: 10.3390/s18124329.
[38] GRADOLEWSKI D, MAGENES G, JOHANSSON S, et al. A wavelet transform-based neural network denoising algorithm for mobile phonocardiography[J]. Sensors (Basel), 2019, 19(4): 1-18.
[39] DONATELLI R E, PARK J A, MATHEWS S M, et al. Time series analysis[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2022, 161(4): 605-608.
doi: 10.1016/j.ajodo.2021.07.013 pmid: 35337650
[40] JIANG H, XIONG H, WU D, et al. AgFlow: fast model selection of penalized PCA via implicit regularization effects of gradient flow[J]. Machine Learning, 2021, 110(8): 2131-2150.
[41] PRAVEEN KUMAR D, AMGOTH T, ANNAVARAPU C S R. Machine learning algorithms for wireless sensor networks: a survey[J]. Information Fusion, 2019, 49: 1-25.
doi: 10.1016/j.inffus.2018.09.013
[42] UNO K, ADACHI K, TRENDAFILOV N T. Clustered common factor exploration in factor analysis[J]. Psychometrika, 2019, 84(4): 1048-1067.
doi: 10.1007/s11336-019-09666-5 pmid: 30847650
[43] LI Z, LI S. Neural network model-based control for manipulator: an autoencoder perspective[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021. DOI: 10.1109/tnnls.2021.3109953.
[44] KRAWCZYK B. Tensor decision trees for continual learning from drifting data streams[J]. Machine Learning, 2021, 110: 3015-3035.
[45] HU X, LI Y, CHEN G, et al. Identification of balance recovery patterns after slips using hierarchical cluster analysis[J]. Journal of Biomechanics, 2022. DOI: 10.1016/j.jbiomech.2022.111281.
[46] LEE L C, LIONG C Y, JEMAIN A A. Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps[J]. Analyst, 2018, 143(15): 3526-3539.
doi: 10.1039/c8an00599k pmid: 29947623
[47] HUANG J-C, KO K-M, SHU M-H, et al. Application and comparison of several machine learning algorithms and their integration models in regression problems[J]. Neural Computing and Applications, 2019, 32(10): 5461-5469.
[48] KONG P-Y. Distributed sensor clustering using artificial neural network with local information[J]. IEEE Internet of Things Journal, 2022, 9(21): 21851-21861.
[49] NGUYEN T D, LEE J S. Recent development of flexible tactile sensors and their applications[J]. Sensors (Basel), 2021, 22(1): 1-24.
[50] FANG Y, ZOU Y, XU J, et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor[J]. Advanced Materials, 2021. DOI:10.1002/adma.202104178.
[51] ZHANG Q, JIN T, CAI J, et al. Wearable triboelectric sensors enabled gait analysis and waist motion capture for iot-based smart healthcare applications[J]. Advanced Science, 2022. DOI:10.1002/advs.202103694.
[52] GHOLAMI M, NAPIER C, PATINO A G, et al. Fatigue monitoring in running using flexible textile wearable sensors[J]. Sensors (Basel), 2020, 20(19): 1-11.
[53] SUNDARAM S, KELLNHOFER P, LI Y, et al. Learning the signatures of the human grasp using a scalable tactile glove[J]. Nature, 2019, 569(7758): 698-702.
[54] RAVENSCROFT D, PRATTIS I, KANDUKURI T, et al. Machine learning methods for automatic silent speech recognition using a wearable graphene strain gauge sensor[J]. Sensors (Basel), 2021, 22(1): 1-13.
[55] ZHANG Z, HE T, ZHU M, et al. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications[J]. npj Flexible Electronics, 2020, 4(1): 1-12.
[56] 荣百川. 基于机器学习的摔倒识别研究[D]. 南京: 南京信息工程大学, 2021: 19-34.
RONG Baichuan. Research on fall recognition based on machine learning[D]. Nanjing: Nanjing Univeristy of Information Science & Technology, 2021: 19-34.
[57] WANG Z, BU M, XIU K, et al. A flexible, stretchable and triboelectric smart sensor based on graphene oxide and polyacrylamide hydrogel for high precision gait recognition in parkinsonian and hemiplegic patients[J]. Nano Energy, 2022. DOI: 10.1016/j.nanoen.2022.107978.
[58] ZHOU Z, CHEN K, LI X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays[J]. Nature Electronics, 2020, 3(9): 571-578.
[59] WU X, LUO X, SONG Z, et al. Ultra-robust and sensitive flexible strain sensor for real-time and wearable sign language translation[J]. Advanced Functional Materials, 2023. DOI:10.1002/adtm.202303504.
[60] WOJCIK K, PIEKARCZYK M. Machine learning methodology in a system applying the adaptive strategy for teaching human motions[J]. Sensors (Basel), 2020, 20(1): 1-23.
[61] CHEN M, OUYANG J, JIAN A, et al. Imperceptible, designable, and scalable braided electronic cord[J]. Nat Commun, 2022, 13(1): 7097.
doi: 10.1038/s41467-022-34918-x pmid: 36402785
[1] 鞠宇, 王朝晖, 李博一, 叶勤文. 基于机器学习的服装生产线员工效率预测[J]. 纺织学报, 2024, 45(05): 183-192.
[2] 彭来湖, 侯良美, 齐育宝, 汝欣, 刘建廷. 基于自适应Loess的纱线张力信号处理方法[J]. 纺织学报, 2024, 45(02): 246-254.
[3] 董凯, 吕天梅, 盛非凡, 彭晓. 面向个性化健康医疗的智能纺织品研究进展[J]. 纺织学报, 2024, 45(01): 240-249.
[4] 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25.
[5] 王梦蕾, 王静安, 高卫东. 计算机辅助配棉技术研究进展[J]. 纺织学报, 2023, 44(08): 225-233.
[6] 胡安钟, 王成成, 钟子恒, 张丽平, 付少海. 氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 164-170.
[7] 王中昱, 苏云, 王云仪. 机器学习建立的个体热舒适模型及其在服装领域的应用展望[J]. 纺织学报, 2023, 44(05): 228-236.
[8] 彭阳阳, 盛楠, 孙丰鑫. 纤维基湿敏柔性驱动器的跨尺度构建及其性能[J]. 纺织学报, 2023, 44(02): 90-95.
[9] 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142.
[10] 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134.
[11] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[12] 肖渊, 李倩, 张威, 胡汉春, 郭鑫雷. 微喷印原电池置换成型织物基柔性导电线路的影响因素研究[J]. 纺织学报, 2022, 43(10): 89-96.
[13] 杨梦凡, 王潮霞, 殷允杰, 邱华. 棉织物的螺吡喃微胶囊印花及其光致变色性能[J]. 纺织学报, 2022, 43(09): 137-142.
[14] 刘欢欢, 王朝晖, 叶勤文, 陈子唯, 郑婧瑾. 可穿戴技术在情绪识别中的应用进展及发展趋势[J]. 纺织学报, 2022, 43(08): 197-205.
[15] 李瑞凯, 李瑞昌, 朱琳, 刘向阳. 基于石墨烯织物电极的七导联心电监测系统[J]. 纺织学报, 2022, 43(07): 149-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!