纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 248-257.doi: 10.13475/j.fzxb.20221106202

• 综合述评 • 上一篇    下一篇

三维服装虚拟展示技术的研究进展

程碧莲, 蒋高明(), 李炳贤   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2023-01-03 修回日期:2023-07-24 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 蒋高明
  • 作者简介:程碧莲(1995—),女,博士生。主要研究方向为数字化纺织技术。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(JUSRP22026);江苏省研究生科研与实践创新计划项目(KYCX2023_247)

Research progress in three-dimensional garment virtual display technology

CHENG Bilian, JIANG Gaoming(), LI Bingxian   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2023-01-03 Revised:2023-07-24 Published:2024-05-15 Online:2024-05-31
  • Contact: JIANG Gaoming

摘要:

为产生逼真而富有动感的服装展示效果,探究虚拟展示技术是一种极具前景的解决方案,为此对国内外三维服装虚拟展示技术的研究进行了回顾。首先系统地概述三维人体建模技术,总结了参数化人体建模和非参数化人体建模的发展现状。其次,以服装建模中的几何建模法、物理建模法和混合建模法3种方法为切入点详细阐述了服装建模的研究历程,分析了国内外学者多年的研究与探索。最后,基于服装虚拟展示技术中的三维着装模拟法和服装动画模拟法介绍了虚拟展示技术从单一的静态模拟发展到具有物理属性的动态仿真的发展过程,论述了三维服装虚拟展示技术中服装着装模拟技术和服装动画模拟技术现有成果的优势和不足,展望了三维服装展示技术未来会朝快速地三维人体建模、高效着装模拟和具有真实感地动画模拟3个方向发展。

关键词: 三维人体建模, 服装建模, 服装虚拟展示, 着装模拟, 动画模拟

Abstract:

Significance The virtual display tehnology of three-dimensional (3-D) clothing is utilized to simulate the clothing state and deformation phenomenon of different human bodies in different postures and various activities. It moves away from the conventional real-life fitting method and can display clothing statically or dynamically in a virtual environment. The wide application of 3-D garment virtual display in textile and garment CAD software can produce the simulation effect of flexible fabric more real, and help designers realize the design and development of visual textiles. The virtual display technology of 3-D clothing is applied to the online game and animation industry, which enables the clothing effect of virtual characters closer to reality. Under the environment of the rapid development of clothing e-commerce, the application of 3-D clothing virtual display technology in the field of clothing e-commerce will help users quickly choose the right model of clothing. This technology can significantly affect the effect of consumer purchase wishes and reduce the amount of returns, so as to improve the business efficiency and promote the commercial development of the clothing industry.

Progress 3-D virtual clothing display involves the integration of technology in many disciplines, committed to produce realistic and dynamic display. By systematically introducing the 3-D human modeling technology, the development status of parametric human modeling and non-parametric human modeling is analyzed to provide a basis for the development of 3-D human modeling. The research process of clothing modeling is described in detail from three methods of geometric modeling, physical modeling and hybrid modeling in clothing modeling. The research and exploration of scholars at home and abroad for many years are analyzed, and the development process of 3-D virtual display technology from single static simulation to dynamic simulation with physical attributes is summarized. The advantages and disadvantages of the existing achievements of clothing simulation technology and clothing animation simulation technology are summarized. For any new human motion, a reliable deformation distribution prediction can be given to effectively adjust the fabric mesh. The prediction results of the multi-precision cloth model have high reliability and can be used for further dynamic adaptation of cloth mesh in animation.

Conclusion and Prospect 3-D human body and clothing modeling are widely used in the fields of textile and garment CAD software, personalized entertainment, animation design and e-commerce. However, there are still some shortcomings such as high computational cost and insufficient simulation accuracy. Therefore, it is urgent to further develop 3-D human body modeling and virtual clothing simulation. Studying the 3-D virtual display of clothing will have deep theoretical value and practical application significance. This paper analyzes the parametric method of human body modeling and non-parametric method of human body modeling development present situation, elaborated the clothing modeling in the geometric modeling method, physical modeling method and hybrid modeling method of the research process, the development of 3-D virtual display technology has been developed from a single static simulation to the dynamic simulation of physical properties, static 3-D dressing model has the advantages of high simulation accuracy and good stability, dynamic clothing animation simulation can vividly show the overall effect of clothing on the human body, but it needs huge computational cost and memory reserves, simulation accuracy needs to be improved. Therefore, the modeling technology, interactive technology, machine learning and other related technologies involved in clothing dress simulation and clothing animation simulation still have great room for improvement and research value, which is worthy of further exploration and exploration. There are three main research trends and difficulties in the future research of 3-D virtual display technology: a) research on fast, low-cost and accurate 3-D human model reconstruction method, including 3-D posture and human geometry model; b) 3-D dress simulation, that is, quickly and stably try on clothing to different body shapes and postures; c) realistic dynamic try-on effects, including fast, low-cost human motion capture and efficient clothing animation simulation technology.

Key words: three-dimensional human modeling, garment modeling, clothing virtual display, dress simulation, animation simulation

中图分类号: 

  • TS941.26

图1

SMPL模型"

图2

Kinects扫描系统"

图3

重建人体模型"

图4

纬编针织物模拟"

图5

模拟结果对比图"

图6

三维服装编辑"

图7

模拟结果"

图8

多重服装序列"

图9

服装动画模拟"

图10

基于示例的服装动画"

[1] AHMAD H B, MOHAMMED H A, TANZILA S, et al. An overview of interactive wet cloth simulation in virtual reality and serious games[J]. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 2018, 6(1): 93-100.
[2] LIU H, JIANG G M, DONG Z J. Online 3D model reconstruction and virtual display for garment[J]. Journal of Engineered Fibers and Fabrics, 2021, 16(1):83-98.
[3] 詹必钦, 李玉贤, 董智佳, 等. 全成形双层结构针织服装部件化虚拟展示研究[J]. 纺织学报, 2022, 43(8): 147-152.
ZHAN Biqin, LI Yuxian, DONG Zhijia, et al. Research on virtual display of fully-formed double-layerknitted clothing parts[J]. Journal of Textile Research, 2022, 43(8): 147-152.
[4] WANG Y X, LLIU Z D. Virtual clothing display platform based on CLO3D and evaluation of fit[J]. Journal of Fiber Bioengineering and Informatics, 2020, 13(1): 37-49.
[5] KIM M, SUNG N J, KIM S J, et al. Parallel cloth simulation with effective collision detection for interactive AR application[J]. Multimedia Tools and Applications, 2019, 78: 4851-4868.
[6] 黎博文, 王萍, 刘玉叶. 基于人体动态特征的三维服装虚拟试穿技术[J]. 纺织学报, 2021, 42(9): 144-149.
LI Bowen, WANG Ping, LIU Yuye. 3-D virtual try-on technique based on dynamic feature of body postures[J]. Journal of Textile Research, 2021, 42(9): 144-149.
[7] 宋莹. 旗袍个性定制和展示系统的交互设计[J]. 纺织学报, 2021, 42(4): 144-148.
SONG Ying. Interactive design of cheongsam personalized customization and display system[J]. Journal of Textile Research, 2021, 42(4): 144-148.
[8] CHENG Z Q, CHEN Y, RALPH R M, et al. Parametric modeling of 3D human body shape: a survey[J]. Computers & Graphics, 2018, 71(3): 88-100.
[9] ANGUELOV D, SRINIVASAN P, KOLLER D, et al. SCAPE: shape completion and animation of people[J]. ACM Transactions on Graphics, 2005, 24(3): 408-416.
[10] LOPER M, MAHMOOD N, ROMERO J, et al. Smpl: A skinned multi-person linear model[J]. ACM Transactions on Graphics, 2015, 34(6): 248-260.
[11] HUANG J, KWOK T H, ZHOU C. Parametric design for human body modeling by wire frame-assisted deep learning[J]. Computer-Aided Design, 2019, 108: 19-29.
[12] XU Y, ZHU S C, TUNG T. Denserac: joint 3D pose and shape estimation by dense render-and compare[C] // Proceedings of the IEEE International Conference on Computer Vision. Seoul: IEEE, 2019:7760-7770.
[13] PAVLAKOS G, CHOUTAS V, GHORBANI N, et al. Expressive body capture: 3D hands, face, and body from a single image[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. California: IEEE, 2019: 10975-10985.
[14] 许豪灿, 李基拓, 陆国栋. 由LeNet-5从单张着装图像重建三维人体[J]. 浙江大学学报, 2021, 55(1):153-161.
XU Haocan, LI Jituo, LU Guodong. Reconstruction of three-dimensional human bodies from single image by LeNet-5[J]. Journal of Zhejiang University, 2021, 55 (1):153-161.
[15] LI Z, OSKARSSON M, HEYDEN A. 3D human pose and shape estimation through collaborative learning and multi-view model-fitting[C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Virtual: IEEE, 2021: 1888-1897.
[16] 张亚凤, 刘翠响, 马杰, 等. 基于多特征点匹配的三维人体姿态重建[J]. 激光与光电子学进展, 2022, 59(16): 325-332.
ZHANG Yafeng, LIU Cuixiang, MA Jie, et al. Three-dimensional human pose reconstruction based on multifeature point matching[J]. Laser & Optoelectronics Progress, 2022, 59(16): 325-332.
[17] 苏亚婷, 刘翠响. 基于高分辨率网络和图卷积网络的三维人体重建模型[J]. 计算机应用, 2023, 43(2): 583-588.
doi: 10.11772/j.issn.1001-9081.2021122075
SU Yating, LIU Cuixiang. Three-dimensional human reconstruction model based on high-resolution net and graph convolutional network[J]. Journal of Computer Applications, 2023, 43(2): 583-588.
doi: 10.11772/j.issn.1001-9081.2021122075
[18] 朱江涛, 吴以凡, 周亮. 基于多Kinect的三维人体重建系统[J]. 东华大学学报(自然科学版), 2015, 41(2):227-231.
ZHU Jiangtao, WU Yifan, ZHOU Liang. 3D human body reconstruction system based on multiple kinects[J]. Journal of Donghua Uuiversity (Natural Science Edition), 2015, 41 (2): 227-231.
[19] 应欣, 程碧莲, 刘正, 等. 体表形态凸角对腰围间隙量的影响[J]. 纺织学报, 2019, 40(10):152-157.
doi: 10.13475/j.fzxb.20181100706
YING Xin, CHENG Bilian, LIU Zheng, et al. Influence of body surface convex angle on waist section ease[J]. Journal of Textile Research, 2019, 40(10): 152-157.
doi: 10.13475/j.fzxb.20181100706
[20] TONG J, ZHOU J, LIU L G, et al. Scanning 3D full human bodies using kinects[J]. Visualization and Computer Graphics, 2012, 18(4): 643-650.
[21] KOLOTOUROS N, PAVLAKOS G, DANIILIDISK. Convolutional mesh regression for single-image human shape reconstruction[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. California: IEEE, 2019: 4501-4510.
[22] SAITO S, SIMON T, SARAGIH J, et al. Pifuhd: multi-level pixel-aligned implicit function for high-resolution 3D human digitization[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington: IEEE, 2020: 84-93.
[23] VAROL G, CEYLAN D, RUSSELL B, et al. Bodynet: volumetric inference of 3D human body shapes[C]// Proceedings of the European Conference on Computer Vision (ECCV). Munich: ECCV 2018 LNCS, 2018: 20-36.
[24] ZHU H, ZUO X, WANG S, et al. Detailed human shape estimation from a single image by hierarchical mesh deformation[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. California: IEEE, 2019:4491-4500.
[25] XIE H, ZHONG Y, YU Z, et al. Non-parametric anthropometric graph convolutional network for virtual mannequin reconstruction[J]. IEEE Access, 2019(8): 3539-3550.
[26] WEIL J. The synthesis of cloth object[J]. ACM SIGGRAPH Computer Graphics, 1986, 20(4): 49-54.
[27] CHEN M, TANG K. A fully geometric approach for de velopable cloth deformation simulation[J]. The Visual Computer, 2010, 26(8): 853-863.
[28] NARAIN R, SAMII A, OBRIEN J F. Adaptive anisotropic remeshing for cloth simulation[J]. ACM Transactions on Graphics, 2012, 31(6):1-10.
[29] GHORBANI E, HASANI H, JAFARI N R. Finite element modelling the mechanical performance of pressure garments produced from elastic weft knitted fabrics[J]. Journal of The Textile Institute, 2019, 110(5): 724-731.
[30] HORIBA Y, AMANO T, INUI S, et al. Proposal of method for estimating clothing pressure of tight-fitting garment made from highly elastic materials: hybrid method using apparel CAD and finite element analysis software[J]. Journal of Fiber Science and Technology, 2021, 77(2): 76-87.
[31] JONATHAN M K, DOUG L J, STEVE M. Simulating knitted cloth at the yarn level[J]. ACM Transactions on Graphics, 2008, 27(3): 65-74.
[32] SPERL G, NARAIN R, WOJTAN C. Homogenized yarn-level cloth[J]. ACM Transactions on Graphics, 2020, 39(4): 1-16.
[33] BREEN D E, HOUSE D H, GETTO P H. A physically-based particle model of woven cloth[J]. The Visual Computer, 1992, 8(5): 264-277.
[34] SHA S, JIANG G M, MA P P, et al. 3D dynamic behaviors simulation of weft knitted fabric based on particle system[J]. Fibers and Polymers, 2015, 16(8): 1812-1817.
[35] 雷惠, 丛洪莲, 张爱军, 等. 基于质点模型的横编织物结构研究与计算机模拟[J]. 纺织学报, 2015, 36(2): 43-48.
LEI Hui, CONG Honglian, ZHANG Aijun, et al. Research of flat knitted structure and compute simulation based on particle model[J]. Journal of Textile Research, 2015, 36(2): 43-48.
[36] 汝欣, 朱婉珍, 史伟民, 等. 密度非均匀分布纬编针织物的变形预测及仿真[J]. 纺织学报, 2022, 43(6): 63-69.
RU Xin, ZHU Wanzhen, SHI Weimin, et al. Deformation prediction and simulation of weft knitted fabrics with non-uniform density distribution[J]. Journal of Textile Research, 2022, 43(6):63-69.
[37] KANG Y M, CHOI J H, CHO H G, et al. An efficient animation of wrinkled cloth with approximate implicit integration[J]. The Visual Computer Journal, 2001, 5(17): 147-157.
[38] OSHITA M, MAKINOUCHI A, Real-time cloth simulation with sparse particles and curved faces[J]. Computer Animation, IEEE Press, Fourteenth Conference on Computer Animation. Seoul: IEEE, 2001: 220-227.
[39] FREDERIC C, NADIA M T. Real-time animation of dressed virtual humans[J]. Eurographics, 2002, 21(3): 327-335.
[40] WANG H, HECHT F, RAMAMOORTHI R, et al. Example-based wrinkle synthesis for clothing anim-ation[J]. ACM Transactions on Graphics, 2010, 29(4): 1-8.
[41] CASAFRANCA J J, CIRIO G, RODRIGUEZ A, et al. Mixing yarns and triangles in cloth simulation[C] // Computer Graphics Forum. Chichester:Wiley, 2020, 39(2): 101-110.
[42] SHA S, WEI W, XIAO B, et al. 3-D dynamic simulation of knitwear based on the hybrid model[J]. Journal of Engineered Fibers and Fabrics, 2021, 16: 1-9.
[43] BARTLE A, SHEFFER A, KIM V G, et al. Physics-driven pattern adjustment for direct 3D garment editing[J]. ACM Transactions on Graphics, 2016, 35(4): 50-61.
[44] TURQUIN E, WITHER J, BOISSIEUX L, et al. A sketch-based interface for clothing virtual chara-cters[J]. IEEE Computer Graphics and Applications, 2007, 27(1): 72-81.
[45] LIU K, ZENG X, PASCAL B, et al. 3D interactive garment pattern-making technology[J]. Computer-Aided Design, 2018, 104:113-124.
[46] 叶勤文, 王朝晖, 黄荣, 等. 虚拟服装迁移在个性化服装定制中的应用[J]. 纺织学报, 2023, 44(6): 183-190.
YE Qinwen, WANG Zhaohui, HUANG Rong, et al. Application of virtual garment transfer in garment customization[J]. Journal of Textile Research, 2023, 44(6): 183-190.
[47] BROUET R, SHEFFER A, BOISSIEUX L, et al. Design preserving garment transfer[J]. ACM Transactions on Graphics, 2012, 31(4): 1-11.
[48] PONSMOLL G, PUJADES S, HU S, et al. Clothcap: seamless 4D clothing capture and retargeting[J]. ACM Transactions on Graphics, 2017, 36(4): 1-15.
[49] HONG F, PAN L, CAI Z, et al. Garment4D: Garment reconstruction from point cloud sequences[J]. Advances in Neural Information Processing Systems, 2021, 34: 27940-27951.
[50] GUNDOGDU E, CONSTANTIN V, SEIFODDINI A, et al. Garnet: a two-stream network for fast and accurate 3D cloth draping[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 8739-8748.
[51] QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Honolulu: IEEE, 2017: 652-660.
[52] WANG T Y, SHAO T, FU K, et al. Learning an intrinsic garment space for interactive authoring of garment animation[J]. ACM Transactions on Graphics, 2019, 38(6):1-12.
[53] FENG W W, YU Y Z, KIM B U. A deformation transformer for real-time cloth animation[J]. ACM Transactions on Graphics, 2010, 29(4): 1-9.
[54] XU W, UMETANI N, CHAO Q, et al. Sensitivity-optimized rigging for example-based real-time clothing synthesis[J]. ACM Transactions on Graphics, 2014, 33(4): 1-11.
[55] XU W, CHAO Q, CHEN Y, et al. Agent dress: real time clothing synthesis for virtual agents using plausible deformations[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(11): 4107-4118.
[56] PAN X, MAI J, JIANG X, et al. Predicting loose-fitting garment deformations using bone-driven motion networks[C]// ACM SIGGRAPH 2022 Conference Proceedings. New York: Association for Computing Machinery, 2022: 1-10.
[57] DENG Y W, MAO T L, SHI M, et al. Cloth deformation prediction based on human motion[C]// 2016 International Conference on Virtual Reality and Visualization (ICVRV).[s.l.]: IEEE, 2016: 258-263.
[58] WANG H M. GPU-based simulation of cloth wrinkles at sub millimeter levels[J]. ACM Transactions on Graphics, 2021, 40(4):1-14.
[1] 赖安琪, 蒋高明, 李炳贤. 全成形毛衫花式结构三维仿真[J]. 纺织学报, 2023, 44(02): 103-110.
[2] 刘海桑, 蒋高明, 董智佳. 基于Web的少梳经编色织物仿真与虚拟展示[J]. 纺织学报, 2021, 42(02): 87-92.
[3] 张卓, 丛洪莲, 蒋高明, 董智佳. 基于交互式遗传算法的Polo衫快速款式推荐系统[J]. 纺织学报, 2021, 42(01): 138-144.
[4] 潘博, 钟跃崎. 基于二维图像的三维服装重建[J]. 纺织学报, 2020, 41(04): 123-128.
[5] 王湛;张辉;赵玉玲. 三维服装CAD中建模与展示技术[J]. 纺织学报, 2008, 29(4): 91-94.
[6] 李勇;胡敏;付小莉. 三维人体建模方法的研究[J]. 纺织学报, 2002, 23(05): 80-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!