纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 51-59.doi: 10.13475/j.fzxb.20221202501

• 纺织工程 • 上一篇    下一篇

单面纬编织物变化孔隙率结构设计与透气导湿性能评价

方雪明, 董智佳(), 丛洪莲, 丁玉琴   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2023-01-28 修回日期:2023-09-20 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 董智佳(1986—),女,副教授,博士。主要研究方向为针织成形织物结构研发。E-mail: dongzj0921@163.com。
  • 作者简介:方雪明(2000—),女,硕士生。主要研究方向为纬编功能织物结构开发。
  • 基金资助:
    国家自然科学基金项目(61902150);江苏省研究生科研与实践创新计划项目(1065212032220020)

Design of variable porosity structure and evaluation of permeablity and moisture conductivity of single side weft knitted fabric

FANG Xueming, DONG Zhijia(), CONG Honglian, DING Yuqin   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2023-01-28 Revised:2023-09-20 Published:2024-05-15 Online:2024-05-31

摘要:

为优化夏季用轻薄但效应单一的平针结构针织物的热湿调节功能,采用不同粗细的涤纶与氨纶搭配,通过原料细度、织物密度以及孔隙率调节,设计开发9种变化孔隙的单面纬编结构织物。研究原料、织物结构和孔隙对织物透气、吸湿等热湿舒适性能的影响。结果表明,孔隙特征与织物透气导湿性能呈现明显关联。织物体积质量在200~400 kg/m3之间,体积质量越小,透气率越高。在机型原料相同的情况下,局部使用细纱会使织物表面孔隙占比上升,织物组织结构影响平均孔径,孔径最大可以达到105 μm。在织物组织结构相同的情况下,织物平均孔径与单向水分传递指数和透湿率均呈现正相关;织物水分蒸发速率与织物体积质量和表面孔隙率也呈现正相关性。模糊综合评价的结果表明,对于单面添纱织物来说,添加氨纶虽然能增强单向导湿性能,但氨纶收缩织物孔隙,增加厚重,使透气效果降低,故在原料不含氨纶且织物表面孔隙率较高的情况下,织物的透气导湿性能最优。

关键词: 纬编织物, 单面添纱, 孔隙结构, 透气性能, 单向导湿, 涤纶, 氨纶

Abstract:

Objective Human body is prone to perspiration, and requirements for thermal and wet comfort of clothing are essential. Permeability and moisture conductivity of fabrics are important influencing factors for heat and humidity management and regulation, and the transmission of fabric to air and implicit sweat is largely affected by its pore structure, including pore size and pore distribution.

Method Weft knitted lace plated structures made from different yarn counts were prepared which formed a differential capillary effect inside the fabric to improve fabric moisture absorption and transmission. The lace plated structures used for making the fabrics endowed the fabric surface with different concave/convex patterns, aiming for improved wicking effect. 9.3 tex (384 f), 5.6 tex (24 f), 5.6 tex (216 f), 3.3 tex (12 f) polyester and 2.2 tex spandex were selected as raw materials, and the German Terrot S 296-2 single side circular weft knitting machine was used, and 9 types of fabrics were prepared with weft knitting lace plated structure as samples. The effects of fabric pores, raw materials and structure on fabric moisture absorption, moisture transmission and moisture dissipation were evaluated.

Results The air permeability of the fabrics was found to be positively correlated with the bulk density, surface porosity and average pore diameter. Since most of the air flew through the fabric pores, the size and distribution of fabric pores were adopted to determine the fabric permeability. The bulk density and average pore diameter showed a great influence on the moisture absorption and conductivity of the fabric. The bulk density and average pore diameter were positively correlated with the moisture conductivity as a whole according to specific conditions. With the same raw materials and organizational structure, the size and distribution of pores were found to affect the tightness of the fabric. Higher bulk density and larger the average pore diameter resulted in tighter fabric structure and greater capillary pressure. The surface porosity was positively correlated with the moisture dissipation performance of the fabric. From the perspective of fabric raw materials and structure, the addition of polyurethane fiber increased the gradient of differential capillary effect of the fabric, leading to improvement of the moisture absorption and conductivity of the fabric, but not the moisture dissipation. Fabric structure will affect the moisture conductivity and moisture dissipation performance. The amount of meshes on the fabric surface was directly related to the specific surface area for fabric evaporation, and more meshes would lead to the better moisture dissipation performance.

Conclusion The results show that the combination of ultrafine polyester and conventional yarn has advantage in moisture absorption and transmission. A fuzzy comprehensive evaluation method is adopted for analysis. Conclusion is drawn, fineness difference of yarns can enrich the gradient of differential capillary effect of fabrics, and achieve a better differential capillary effect, improving the moisture absorption and conductivity of the fabric. The 6#and 7# fabrics in process 4 have certain advantages in the comprehensive properties of permeability and moisture conductivity, which means the plated fabric with high surface porosity and without spandex, composed of loops and floating structure, has the best comprehensive performance of moisture transmission and permeability. The surface porosity with more meshes in the unit circulation tissue, leading up to the better comprehensive moisture absorption and perspiration performance. The nine schemes in this paper are easy to produce and do not need to obtain unidirectional moisture conduction through additives, which provides theoretical and experimental basis for the development of sportswear fabrics with good moisture and heat management ability, environmental protection and sustainable utilization.

Key words: weft knitted fabric, single-sided lace plated stitch, pore structure, air permeability, unidirectional moisture conductivity, polyester yarn, spandex yarn

中图分类号: 

  • TS186.1

图1

4种工艺组织结构图"

表1

原料比例和上机织造参数"

样本
编号
面纱含量/% 地纱含量/% 上机织造参数及成品规格
9.3 tex
(384 f)
涤纶
5.6 tex
(24 f)
涤纶
5.6 tex
(216 f)
涤纶
3.3 tex
(12 f)
涤纶
9.3 tex
(384 f)
涤纶
5.6 tex
(24 f)
涤纶
2.2 tex
氨纶
纱线长度/
(cm·
(100针)-1)
横密/
(纵行·
(5 cm)-1)
纵密/
(横列·
(5 cm)-1)
1# 57.20 6.10 36.70 24.2/23.7/16 84 116
2# 48.60 13.60 37.80 24.2/23.7/24.2 76 113
3# 63.80 3.70 32.50 24/23.5/21 80 104
4# 61.50 3.60 31.30 3.60 24/23.5/7/21 98 160
5# 47.30 5.40 41.90 5.40 24/23.5/7/21 92 158
6# 61.00 5.10 33.90 24/23.5/21 75 98
7# 34.48 5.18 60.34 24/23.5/21 80 116
8# 58.10 4.80 32.30 4.80 24/23.5/7/21 98 170
9# 32.80 4.90 57.40 4.90 24/23.5/7/21 96 170

图2

ImageJ 图像处理"

表2

织物孔隙参数"

工艺
方案
样本
编号
厚度/
mm
面密度/
(g·m-2)
体积质量/
(kg·m-3)
表面孔
隙率/%
平均
孔径/μm
工艺1 1# 0.38 139.2 366.32 9.95 46.455 2
工艺2 2# 0.39 138.4 354.87 11.85 65.861 5
工艺3 3# 0.37 124.2 335.68 15.17 99.635 6
4# 0.55 174.0 316.36 9.65 100.150 3
5# 0.64 163.8 255.94 8.66 105.580 7
工艺4 6# 0.36 114.4 317.78 19.91 36.653 7
7# 0.37 112.8 304.86 19.92 28.497 7
8# 0.68 188.6 277.35 10.34 53.007 7
9# 0.67 187.4 279.70 10.46 50.286 9

图3

织物透气率与体积质量"

图4

织物透气率与表面孔隙率"

图5

织物单向水分传递指数与体积质量"

图6

织物单向水分传递指数与平均孔径"

图7

织物单向水分传递指数"

图8

织物芯吸高度"

图9

织物芯吸高度与体积质量"

图10

织物透湿率与平均孔径"

图11

织物透湿率与体积质量"

图12

水分蒸发速率与织物体积密度和关系表面孔隙率"

图13

织物水分蒸发速率"

图14

织物滴水扩散面积与表面孔隙率"

[1] 程宁波, 缪东洋, 王先锋, 等. 用于个人热湿舒适管理的功能纺织品研究进展[J]. 纺织学报, 2022, 43(10): 200-208.
doi: 10.13475/j.fzxb.20210401609
CHENG Ningbo, MIAO Dongyang, WANG Xianfeng, et al. Research progress in functional textiles for personal thermal and wet comfort management[J]. Journal of Textile Research, 2022, 43(10): 200-208.
doi: 10.13475/j.fzxb.20210401609
[2] 钱娟, 谢婷, 张佩华, 等. 聚乙烯针织物的热湿舒适性能[J]. 纺织学报, 2022, 43(7): 60-66.
QIAN Juan, XIE Ting, ZHANG Peihua, et al. Thermal and wet comfort of polyethylene knitted fabrics[J]. Journal of Textile Research, 2022, 43(7): 60-66.
[3] 徐广标, 邱茂伟, 王府梅. 精纺毛织物的孔隙与结构及透气性的关系[J]. 毛纺科技, 2005, 33(4): 14-17.
XU Guangbiao, QIU Maowei, WANG Fumei. The relationship between porosity, structure and air permeability of worsted fabrics[J]. Wool Textile Journal, 2005, 33 (4): 14-17.
[4] 孙岑文捷, 倪军, 张昭华, 等. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127,135.
doi: 10.13475/j.fzxb.20200200807
SUN Cen Wenjie, NI Jun, ZHANG Zhaohua, et al. Ventilation design and thermal and wet comfort evaluation of knitted sportswear[J]. Journal of Textile Research, 2020, 41(11): 122-127,135.
[5] MIAO Dongyang, WANG Xianfeng, YU Jianyong, et al. A biomimetic transpiration textile for highly efficient personal drying and cooling[J]. Advanced Functional Materials, 2021, 31(14): 1-10.
[6] 许瑞超, 张一平, 陈莉娜. 针织运动面料的差动毛细导湿性[J]. 纺织学报, 2007, 28(3): 20-22.
XU Ruichao, ZHANG Yiping, CHEN Lina. Differential capillary moisture conductivity of knitted sports fabrics[J]. Journal of Textile Research, 2007, 28(3): 20-22.
[7] 翟孝瑜. 导湿快干针织运动面料的研究与开发[D]; 苏州: 苏州大学, 2007:13-17.
ZHAI Xiaoyu. Research and development of moisture conductive and fast drying knitted sports fabric[D]. Suzhou: Soochow University, 2007:13-17.
[8] 李小倩, 刘让同, 耿长军, 等. 织物的孔隙特征与透气透湿性研究[J]. 棉纺织技术, 2019, 47(11): 17-20.
LI Xiaoqian, LIU Rangtong, GENG Changjun, et al. Study on the pore characteristics and permeability of fabrics[J]. Cotton Textile Technology, 2019, 47(11): 17-20.
[9] 冯华峰, 刘晨, 王刚强, 等. 织物透气性计算方法的探究[J]. 毛纺科技, 2022, 50(6): 33-38.
FENG Huafeng, LIU Chen, WANG Gangqiang, et al. Research on the calculation method of fabric permeability[J]. Wool Textile Journal, 2022, 50(6): 33-38.
[10] DAS A, YADAW S S. Study on moisture vapor transmission characteristics of woven fabrics from cotton acrylic bulked yarns[J]. Journal of the Textile Institute, 2013, 104(3): 322-329.
[11] 张文娟, 纪峰, 张瑞云, 等. 毛织物孔隙特征与透湿性关系[J]. 纺织学报, 2019, 40(1): 67-72.
ZHANG Wenjuan, JI Feng, ZHANG Ruiyun, et al. Relationship between pore characteristics and moisture permeability of wool fabrics[J]. Journal of Textiles, 2019, 40(1): 67-72.
[12] 王玥, 王春红, 徐磊, 等. 三维导湿结构环保针织面料开发与吸湿速干性能评价[J]. 纺织学报, 2022, 43(10): 58-64.
doi: 10.13475/j.fzxb.20210907907
WANG Yue, WANG Chunhong, XU Lei, et al. Development of environment-friendly knitted fabrics with three-dimensional moisture transmission structure and evaluation of moisture absorption and quick drying performance[J]. Journal of Textile Research, 2022, 43(10): 58-64.
doi: 10.13475/j.fzxb.20210907907
[13] 陈晴, 张家琳, 范丽敏. 经编间隔织物的透气性与透湿性[J]. 服装学报, 2017, 2(2): 107-112.
CHEN Qing, ZHANG Jialin, FAN Limin. Air permeability and moisture permeability of warp knitted spacer fabric[J]. Journal of Clothing Research, 2017, 2(2): 107-112.
[14] 陈晴, 张鑫, 孙思瑾, 等. 添纱纬编导湿快干面料的性能[J]. 服装学报, 2019, 4(1): 5-12.
CHEN Qing, ZHANG Xin, SUN Sijin, et al. Performance of weft added woven wet and fast drying fabrics[J]. Journal of Clothing Research, 2019, 4(1): 5-12.
[15] 楚鑫鑫, 肖红, 范杰. 织物凉感等级的主客观评价及确定[J]. 纺织学报, 2019, 40(2): 105-113.
CHU Xinxin, XIAO Hong, FAN Jie. Subjective and objective evaluation and determination of fabric cooling sensation grade[J]. Journal of Textile Research, 2019, 40(2): 105-113.
[1] 权衡, 钱赛龙, 刘诗楠, 邹春梅, 倪丽杰. 非线性阳离子聚氨酯改性有机硅柔软剂的制备及其应用性能[J]. 纺织学报, 2024, 45(05): 121-128.
[2] 胡自强, 骆晓蕾, 魏璐琳, 刘琳. 植酸/壳聚糖对涤纶/棉混纺织物的协同阻燃整理[J]. 纺织学报, 2024, 45(04): 126-135.
[3] 邵明军, 蹇玉兰, 唐唯, 柴希娟, 万辉, 解林坤. 涤纶织物表面耐久超疏水涂层制备及其水油分离性能[J]. 纺织学报, 2024, 45(04): 142-150.
[4] 张永芳, 郭红, 史晟, 阎智锋, 侯文生. 涤纶/棉混纺织物在水热体系中的降解[J]. 纺织学报, 2024, 45(04): 160-168.
[5] 冯亚, 孙颖, 崔艳超, 刘梁森, 张宏亮, 胡俊军, 居傲, 陈利. 含镍铬合金丝纬编电加热层复合材料的层间剪切性能[J]. 纺织学报, 2024, 45(04): 89-95.
[6] 卢韵静, 王雪, 齐元章, 宋琳, 廉志军, 李鑫. 颜料与线密度对原液着色涤纶短纤维及纱线颜色的影响[J]. 纺织学报, 2024, 45(03): 97-105.
[7] 王博, 刘美亚, 陈明娜, 宋孜灿, 夏明, 李沐芳, 王栋. 聚吡咯/氨纶长丝的应变传感性能与应用[J]. 纺织学报, 2024, 45(02): 119-125.
[8] 李平, 朱平, 刘云. 壳聚糖基膨胀阻燃涤纶/棉混纺织物的制备及其性能[J]. 纺织学报, 2024, 45(02): 162-170.
[9] 葛怀富, 吴伟, 王健, 徐红, 毛志平. 5-(二甲氨基)-2-甲基-5-氧戊酸甲酯在超临界二氧化碳流体染色中的应用[J]. 纺织学报, 2024, 45(01): 120-127.
[10] 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82.
[11] 肖云超, 杨雅茹, 郭健鑫, 王童谣, 田强. 高温自交联抗熔滴阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 151-159.
[12] 丁玉琴, 董智佳, 丛洪莲, 葛美彤. 单向导湿纬编成形织物的结构设计及其性能[J]. 纺织学报, 2023, 44(11): 83-89.
[13] 王雅倩, 万爱兰, 曾登, 吴光军, 祁倩. 形状记忆氨纶/锦纶包覆纱的制备及其压力袜性能[J]. 纺织学报, 2023, 44(10): 53-59.
[14] 聂文琪, 许帅, 高俊帅, 方斌, 孙江东. 聚(3-羟基丁酸-3-羟基戊酸酯)改性涤纶长丝的降解性能[J]. 纺织学报, 2023, 44(09): 35-42.
[15] 王雅倩, 万爱兰, 曾登. 棉/形状记忆氨纶纬编免烫衬衫面料制备及其性能评价[J]. 纺织学报, 2023, 44(05): 125-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!