纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 70-78.doi: 10.13475/j.fzxb.20230204201

• 纺织工程 • 上一篇    下一篇

基于变截面复丝模型的机织物模拟

徐辉1, 朱昊1,2(), 潘苏情1, 史红艳1,2, 应迪1   

  1. 1.绍兴文理学院 纺织服装学院, 浙江 绍兴 312000
    2.浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
  • 收稿日期:2023-02-20 修回日期:2023-11-08 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 朱昊(1972—),男,副教授。主要研究方向为数字化纺织技术。E-mail:zhuhao@usx.edu.cn。
  • 作者简介:徐辉(1999—),男,硕士生。主要研究方向为数字化纺织技术。
  • 基金资助:
    绍兴文理学院学生科研项目(Y20220707)

Woven fabric simulation based on variable section multifilament model

XU Hui1, ZHU Hao1,2(), PAN Suqing1, SHI Hongyan1,2, YING Di1   

  1. 1. College of Textile and Garment, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
  • Received:2023-02-20 Revised:2023-11-08 Published:2024-05-15 Online:2024-05-31

摘要:

为解决机织物模拟时因纱线截面不变而导致纱线互相渗透、模拟效果失真等问题,提出一种变截面复丝模型作为机织物模拟时经纬纱的模型。从空间圆参数方程中受到启发,建立空间椭圆参数方程作为纱线的截面模型;提出一种椭圆等分算法,通过等分弧长的方式建立了复丝模型。从受力分析的角度分析纱线中心线上不同位置截面的受挤压程度,建立了平纹及非平纹组织的交织模型,并以压扁系数表示不同截面的压扁状态。研究结果表明:变截面椭圆与复丝相结合构成的经纬纱模型模拟效果逼真;交织模型在减少纱线渗透的同时,也更符合实际情况;模拟的机织物表层纹理清晰,达到了预期效果。

关键词: 空间椭圆, 变截面复丝模型, 交织模型, 机织物模拟, 经纬纱模型

Abstract:

Objective In order to improve the simulation effect and accuracy of woven fabric simulation and solve the problem of yarn interpenetration during weaving due to the constant yarn cross section, a variable cross-section multifilament model is proposed as the model of warp and weft yarns during woven fabric simulation.

Method Inspired by the spatial circular parameter equation, the spatial elliptical parameter equation is established as the yarn cross-section model. An ellipse bisection algorithm is proposed, and the multifilament model is established by bisecting the arc length. From the point of view of force analysis, the compression degree of cross sections at different positions on the yarn centerline is analyzed, and the interweaving model of plain and non-plain weave is established, and the flattening state of different cross sections is expressed by flattening coefficient.

Results It is considered that the cross section of the yarn in the process of warp and weft interweaving is elliptical, and the spatial elliptical parameter equations are derived through rotation transformation and translation transformation. Different from the previous practice that the space curve cylinder is regarded as a yarn model, the proposed multifilament model represents the yarn from the fiber level, and the proposed ellipse circumference bisection algorithm simulates the visual effect of monofilaments arranged on the multifilament surface. When simulating the twisting effect of multifilament, the ellipse circumference bisection algorithm is modified, and the parameters of twist angle are added to simulate the multifilament effect diagrams with different twist angles. From the mechanical point of view, the buckling degree of warp and weft yarns and the degree of extrusion deformation at different positions are deduced, and the woven fabric interweaving model is established by geometric means. The model analyzes the flattened shape of the yarn at the interweaving point and the middle section of the adjacent interweaving point. After calculating the flattening coefficients of the cross-section and the middle cross-section of the interweaving point through the model, it is considered that the flattening coefficients of the warp (weft) yarn cross-section are both between them, or increase or decrease linearly. After calculating the three-dimensional coordinates of each data point, the curve is constructed by spline interpolation to determine the centerline trajectory of the yarn. Combining the centerline trajectory with the yarn flattening coefficient, the section of each point on the centerline trajectory is calculated by using the spatial elliptic parameter equation, and finally the complete warp and weft yarn is formed. The plain weave and twill weave are simulated. It can be seen that the woven fabric constructed by this algorithm has less warp and weft penetration and achieved the expected effect. In order to show the simulation of the algorithm, the changing and jointing weaves are also simulated. The simulation results show that the woven fabric based on multifilament variable cross-section model has high simulation degree and clear surface texture.

Conclusion The method of deducing the spatial elliptic parameter equation in this paper can be extended to other plane graphics. Plane graphics expressed by parametric equations can be transformed into spatial graphics through rotation and translation transformation, which provides a new idea for the study of fiber and fabric simulation. The interweaving model established from the angle of force analysis conforms to the actual situation. After combining with the multifilament variable cross-section model, the yarn infiltration between different systems is less, and the simulation effect of woven fabric is realistic, which achieves the expected effect.

Key words: space ellipse, variable section multifilament model, interweave model, fabric simulation, warp and weft yarns model

中图分类号: 

  • TS101.1

图1

旋转变换示意图"

图2

平移变换示意图"

图3

纱线截面压扁示意图"

图4

复丝横截面模型"

图5

算法流程图"

图6

复丝模拟效果"

图7

单丝轨迹与捻回角"

图8

椭圆周顶点变化示意图"

图9

不同捻回角模拟效果图"

图10

平纹组织经纱屈曲图解"

图11

非平纹组织经纱屈曲图解"

图12

平纹及斜纹组织模拟图"

表1

算法对比分析"

方法 三角形面片数目 时间复杂度
射线检测法 39 800 O(n2)
层次包围盒法 5 800 O(nlnn)
本文算法 O(n)

图13

织物组织模拟"

[1] 王志东, 颜钢锋, 张瑞林. 一种新的纱线模拟算法[J]. 浙江工程学院学报, 2004, 21(2):124-126.
WANG Zhidong, YAN Gangfeng, ZHANG Ruilin. A new yarn simulation algorithm[J]. Journal of Zhejiang Institute of Technology, 2004, 21(2):124-126.
[2] 张瑞云, 黄新林, 李汝勤. 机织物的计算机三维模拟[J]. 纺织学报, 2005, 26(1):62-63.
ZHANG Ruiyun, HUANG Xinlin, LI Ruqin. Computer 3D simulation of woven fabrics[J]. Journal of Textile Research, 2005, 26(1):62-63.
[3] 秦芳, 顾平. 织物结构的多项式数学模型与三维模拟[J]. 丝绸, 2008(2):32-35.
QIN Fang, GU Ping. Polynomial mathematical model and 3D simulation of fabric structure[J]. Journal of Silk, 2008(2):32-35.
[4] 王旭, 储长流, 倪庆清, 等. 运用MAXScript语言的单层机织物结构三维建模[J]. 纺织学报, 2019, 40(1):159-165.
WANG Xu, CHU Changliu, NI Qingqing, et al. Three-dimensional modeling of single-layer woven fabric structure using MAXScript language[J]. Journal of Textile Research, 2019, 40(1):159-165.
[5] 李永红, 曾平, 赵利, 等. 基于三维图形的布面仿真技术研究[J]. 纺织学报, 2004, 25(6):67-68.
LI Yonghong, ZENG Ping, ZHAO Li, et al. Research on cloth surface simulation technology based on 3D graphics[J]. Journal of Textile Research, 2004, 25(6):67-68.
[6] GONG R H, OZGEN B, SOLEIMANI M. Modeling of yarn cross-section in plain woven fabric[J]. Textile Research Journal, 79(11), 1014-1020.
[7] 崔世忠, 郑天勇, 王东峰, 等. 用变截面纱线模型模拟平纹织物的研究[J]. 棉纺织技术, 2007, 35(4):20-22.
CUI Shizhong, ZHENG Tianyong, WANG Dongfeng, et al. Study on plain fabric simulation with variable section yarn model[J]. Cotton Textile Technology, 2007, 35(4):20-22.
[8] 张宁, 李忠健, 潘如如, 等. 采用色纺纱图像的真实感色织物模拟[J]. 纺织学报, 2017, 38(5):37-42.
ZHANG Ning, LI Zhongjian, PAN Ruru, et al. The image sense of reality of colored spun yarn color fabric simulation[J]. Journal of Textile Research, 2017, 42 (5): 37-42.
[9] 罗治国. 空间圆的参数方程及其应用[J]. 湖南师范大学自然科学学报, 2012, 35(6):24-26.
LUO Zhiguo. Parametric equation of space circle and its application[J]. Journal of Natural Science of Hunan Normal University, 2012, 35(6):24-26.
[10] 冯有宽. 椭圆弧长的级数表达式及其近似计算[J]. 大学数学, 2018, 34(1):106-110.
FENG Youkuan. Series expression of arc length of ellipse and its approximate calculation[J]. University Mathematics, 2018, 34(1):106-110.
[11] 徐辉, 朱昊, 潘苏情, 等. 基于OpenGL的复丝三维模拟[J]. 毛纺科技, 2023, 51(4):76-81.
XU Hui, ZHU Hao, PAN Suqing, et al. 3D simulation of multifilament based on OpenGL[J]. Wool Textile Journal, 2023, 51(4):76-81.
[12] 林国红. 辨识椭圆的离心角与旋转角[J]. 数理化解题研究, 2021(34):34-36.
LIN Guohong. Identification of centrifugal angle and rotation angle of ellipse[J]. Mathematical and Chemical Problem Solving Research, 2021(34):34-36.
[13] WANG H, WANG Z. A variable metric stochastic theory of textile composites with random geometric parameters of yarn cross-section[J]. Composite Structures, 2015, 126: 78-88.
[14] 张香俊, 郑天勇, 陈子晗. 中低密度机织平纹织物中纱线压扁变化规律[J]. 纺织学报, 2013, 34(12):50-54.
ZHANG Xiangjun, ZHENG Tianyong, CHEN Zihan. Variation of yarn flattening in medium and low density woven plain fabric[J]. Journal of Textile Research, 2013, 34(12):50-54.
[15] 马崇启, 胡传胜, 张振波. 基于贝塞尔曲线的机织物三维模拟方法[J]. 天津工业大学学报, 2013(1):18-21.
MA Chongqi, HU Chuansheng, ZHANG Zhenbo. 3D Simulation method of woven fabric based on bessel curve[J]. Journal of Tiangong University, 2013(1):18-21.
[16] FARAZMAND M, HALLER G. Polar rotation angle identifies elliptic islands in unsteady dynamical systems[J]. Physica D: Nonlinear Phenomena, 2016, 315: 1-12.
[17] 郑天勇, 黄故. 机织物结构的计算[J]. 天津工业大学学报, 2002, 21(2):12-16.
ZHENG Tianyong, HUANG Gu. Calculation of woven fabric structure[J]. Journal of Tiangong University, 2002, 21(2):12-16.
[1] 钱丽莉, 郁崇文. 压力棒牵伸区中的纤维数量分布模型[J]. 纺织学报, 2024, 45(02): 112-118.
[2] 李麒阳, 季诚昌, 郗欣甫, 孙以泽. 大尺寸异形结构芯模编织策略及纱线轨迹预测[J]. 纺织学报, 2023, 44(10): 188-195.
[3] 贺雅勤, 毕雪蓉, 钱希茜, 阮钧, 郁崇文. 牵伸对纱条条干不匀影响的模拟研究[J]. 纺织学报, 2021, 42(06): 85-90.
[4] 杨恩惠, 邱华, 代文杰. 基于六边形网格结构的针织物三维建模[J]. 纺织学报, 2019, 40(11): 69-74.
[5] 张弘强 胡远波 姜展 匡雪琴 郁崇文. 生条中纤维左头端的分布[J]. 纺织学报, 2016, 37(05): 28-31.
[6] 娄辉清 辛长征 许志忠 盛杰侦. 气流场和聚合物射流运动对液喷纺纤维形貌的影响[J]. 纺织学报, 2015, 36(10): 17-23.
[7] 严广松, 苏玉恒, 朱进忠. 纱线条干不匀的随机模拟[J]. 纺织学报, 2012, 33(1): 33-37.
[8] 徐定华 陈远波 程建新. 低温环境下纺织材料类型设计反问题[J]. 纺织学报, 2011, 32(9): 24-28.
[9] 欧建文;姚金波;李淑红;梁小平;吴畏. 分形理论在羊毛纱线定形中的应用[J]. 纺织学报, 2011, 32(5): 33-37.
[10] 贾立锋. 重叠纤维的分离计数算法[J]. 纺织学报, 2011, 32(5): 43-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!