纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 1-10.doi: 10.13475/j.fzxb.20221101501
• 纤维材料 • 下一篇
吴雨航1, 魏建斐1,2, 顾伟文1, 王玉萍3, 张安莹1, 王锐1()
WU Yuhang1, WEI Jianfei1,2, GU Weiwen1, WANG Yuping3, ZHANG Anying1, WANG Rui1()
摘要:
针对聚对苯二甲酸乙二醇酯(PET)阻燃性较差的问题,以[(6-氧代-6H-二苯并[c,e][1,2]氧磷杂己环-6-基)甲基]丁二酸(DDP)和明胶基碳点(gCDs)构建复合阻燃体系,采用原位聚合法制备了阻燃DDP-gCDs-PET,借助扫描电子显微镜、傅里叶变换红外光谱仪对其结构进行分析,通过极限氧指数(LOI)、垂直燃烧(UL-94)及锥形量热指标研究了不同质量分数的gCDs与DDP复配后对PET阻燃性能的影响,并利用热重-傅里叶变换红外光谱分析探究了阻燃PET在气相中的热分解产物,提出了DDP、gCDs对PET的阻燃机制。结果表明:当添加DDP质量分数为8%、gCDs质量分数为1.0%时,DDP-gCDs-PET的UL-94等级提升至V-0级,LOI值可达到35%;相较于纯PET,DDP-gCDs-PET的热释放速率峰值降低39.77%,总热释放量降低25.00%,引燃时间延长25 s,阻燃效果显著改善;在燃烧过程中DDP促进了PET基体分解并在气相中淬灭自由基,gCDs使热量迅速扩散,提升了PET基体的热稳定性能,且gCDs在凝聚相促进成炭使DDP中的P留存于炭层中,二者共同作用提升了PET的阻燃性能。
中图分类号:
[1] | AURORE Vannier, SOPHIE Duquesne, SERGE Bourbigot, et al. The use of POSS as synergist in intumescent recycled poly(ethylene terephthalate)[J]. Polymer Degradation and Stability, 2008, 93(4): 818-826. |
[2] | ZHOU Shanshan, YANG Yubin, ZHU Zhe, et al. Preparation of a halogen-free flame retardant and its effect on the poly(L-lactic acid) as the flame retardant material[J]. Polymer, 2021. DOI:10.1016/j.polymer.2021.124027. |
[3] | XIANG Yushu, GAO Yun, XU Guomin, et al. Thermal degradation behavior and flame retardant properties of PET/DiDOPO conjugated flame retardant compo-sites[J]. Frontiers in Chemistry, 2022. DOI:10.3389/fchem.2022.1018998. |
[4] | LI Ping, DANG Li, LI Yawei, et al. Enhanced flame-retardant and mechanical properties of epoxy resin by combination with layered double hydroxide, Mg2B2O5 whisker, and dodecyl dihydrogen phosphate[J]. Materials & Design, 2022. DOI: 10.1016/j.matdes.2022.110608. |
[5] | WANG Feiyue, LIAO Jiahao, YAN Long, et al. Fabrication of diaminodiphenylmethane modified ammonium polyphosphate to remarkably reduce the fire hazard of epoxy resins[J]. Polymers, 2021. DOI: 10.3390/polym13193221. |
[6] | 高建伟, 王锐, 董振峰, 等. 磷氟协同阻燃PET的制备及性能研究[J]. 北京服装学院学报:自然科学版, 2019, 39(2): 1-9. |
GAO Jianwei, WANG Rui, DONG Zhenfeng, et al. Preparation and properties of PET with synergistic flame retardant containing phosphorus and fluoride[J]. Journal of Beijing Institute of Fashion Techno-logy(Natural Science Edition), 2019, 39(2): 1-9. | |
[7] | LIU Ke, LI Yuanyuan, TAO Lei, et al. Preparation and characterization of polyamide 6 fibre based on a phosphorus-containing flame retardant[J]. RSC Advances, 2018, 8(17): 9261-9271. |
[8] | LU Peng, ZHAO Zeyong, XU Boren, et al. A novel inherently flame-retardant thermoplastic polyamide elastomer[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.122278. |
[9] | CHEN Xiaodong, ZHANG Chi, SONG Guangling, et al. Electrochemical activity and damage of single carbon fiber[J]. Materials, 2021. DOI: 10.3390/ma14071758. |
[10] | NAIK Vaibhav M, BHOSALE Sheshanath V, KOLEKAR Govind B. A brief review on the synthesis, characterisation and analytical applications of nitrogen doped carbon dots[J]. Analytical Methods, 2022, 14(9): 877-891. |
[11] |
ZHANG Zengting, YI Guiyun, LI Peng, et al. A minireview on doped carbon dots for photocatalytic and electrocatalytic applications[J]. Nanoscale, 2020, 12(26): 13899-13906.
doi: 10.1039/d0nr03163a pmid: 32597441 |
[12] | MUTUYIMANA Felicte Pacifique, LIU Juanjuan, NSANZAMAHORO Stanislas, et al. Yellow-emissive carbon dots as a fluorescent probe for chrom-ium(VI)[J]. Mikrochimica Acta, 2019. DOI: 10.1007/s00604-019-3284-1. |
[13] | LI Junzhi, LIU Jianhua, XU Liqun, et al. Preparation of thermoresponsive fluorescent carbon dots for cellular imaging[J]. Polymer International, 2017, 66(1): 92-97. |
[14] | CHEN Binbin, LIU Mengli, GAO Yating, et al. Design and applications of carbon dots-based ratiometric fluorescent probes: a review[J]. Nano Research, 2022, 16: 1064-1083. |
[15] | XIA Chunlei, ZHU Shoujun, FENG Tanglue, et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots[J]. Advanced Science, 2019. DOI: 10.1002/advs.201901316. |
[16] |
ZHANG Shiwang, ZHANG Liangxing, HUANG Linsen, et al. Study on the fluorescence properties of carbon dots prepared via combustion process[J]. Journal of Luminescence, 2019, 206: 608-612.
doi: 10.1016/j.jlumin.2018.10.086 |
[17] |
LIU Junjun, LI Rui, YANG Bai. Carbon dots: a new type of carbon-based nanomaterial with wide applica-tions[J]. ACS Central Science, 2020, 6(12): 2179-2195.
doi: 10.1021/acscentsci.0c01306 pmid: 33376780 |
[18] | ARCHITHA Natarajan, RAGUPATHI Murugesan, SHOBANA Chellappan, et al. Microwave-assisted green synthesis of fluorescent carbon quantum dots from Mexican Mint extract for Fe3+ detection and bio-imaging applications[J]. Environmental Research, 2021. DOI: 10.1016/j.envres.2021.111263. |
[19] | WANG Jing, LI Qilong, ZHOU Jinge, et al. Synthesis, characterization and cells and tissues imaging of carbon quantum dots[J]. Optical Materials, 2017, 72: 15-19. |
[20] | ZHANG Susu, YUAN Li, LIANG Guozheng, et al. Preparation of multicolor-emissive carbon dots with high quantum yields and their epoxy composites for fluorescence anti-counterfeiting and light-emitting devices[J]. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2022, 10(21): 8441-8458. |
[21] | ALI Haydar, GHOSH Santu, JANA Nikhil Ranjan. Fluorescent carbon dots as intracellular imaging probes[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020. DOI: 10.1002/wnan.1617. |
[22] |
JIN Jianchen, YU Yue, YAN Ren, et al. N,S-codoped carbon dots with red fluorescence and their cellular imaging[J]. ACS Applied Bio Materials, 2021, 4(6): 4973-4981.
doi: 10.1021/acsabm.1c00242 pmid: 35007045 |
[23] | ANJANA R R, ANJALI Devi J S, JAYASREE Contact M, et al. N-doped carbon dots as a fluorescent probe for bilirubin[J]. Microchimica Acta, 2017. DOI: 10.1007/s00604-017-2574-8. |
[24] | KIM Tak H, WHITE Alan R, SIRDAARTA Joseph P, et al. Yellow-emitting carbon nanodots and their flexible and transparent films for white LEDs[J]. ACS Applied Materials Interfaces, 2016, 8(48): 33102-33111. |
[25] | YUAN Fanglong, YUAN Ting, SUI Laizhi, et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs[J]. Nature Communications, 2018. DOI: 10.1038/s41467-018-04635-5. |
[26] | ZHANG Yuecheng, LI Chengjia, SUN Lingbo, et al. Defects coordination triggers red-shifted photoluminescence in carbon dots and their application in ratiometric Cr(VI) sensing[J]. Microchemical Journal, 2021. DOI: 10.1016/j.microc.2021.106552. |
[27] |
WU Xiaoming, LI Yanan, YANG Shaoxiang, et al. Discriminative detection of mercury (II) and hydrazine using a dual-function fluorescent probe[J]. Luminescence, 2020, 35(5): 754-762.
doi: 10.1002/bio.3781 pmid: 31999894 |
[28] | LIU Chang, LI Hongying, CHENG Rui, et al. Facile synthesis, high fluorescence and flame retardancy of carbon dots[J]. Journal of Materials Science & Technology, 2022, 104: 163-171. |
[29] | XUE Baoxia, SHI Yiran, ZHANG Chunyan, et al. Construction of a P-N-Si flame retardant coating on the cotton fabric with the integration of biomass carbon dots and ammonium polyphosphate[J]. Cellulose, 2022, 29, 9469-9486. |
[30] | 顾伟文, 王文庆, 魏丽菲, 等. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织学报, 2021, 42(7): 1-10. |
GU Weiwen, WANG Wenqing, WEI Lifei, et al. Influnce of carbon dots on properties of flame retardant poly(ethylene terephthalate)[J]. Journal of Textile Research, 2021, 42(7): 1-10. | |
[31] | GU Weiwen, DONG Zhenfeng, ZHANG Anying, et al. Functionalization of PET with carbon dots as copolymerizable flame retardants for the excellent smoke suppressants and mechanical properties[J]. Polymer Degradation and Stability, 2022. DOI: 10.1016/j.polymdegradstab.2021.109766. |
[32] | RAHIMI Aghdam Taher, SHARIATINIA Zahra, HAKKARAINEN Minna, et al. Nitrogen and phosphorous doped graphene quantum dots: excellent flame retardants and smoke suppressants for polyacrylonitrile nanocomposites[J]. Journal of Hazardous Materials, 2020. DOI: 10.1016/j.jhazmat.2019.121013. |
[33] | DING Hui, ZHOU Xuanxuan, ZHANG Zihui, et al. Large scale synthesis of full-color emissive carbon dots from a single carbon source by a solvent-free method[J]. Nano Research, 2021, 15(4): 3548-3555. |
[34] | FANG Laiping, WU Minjian, HUANG Chushu, et al. Industrializable synthesis of narrow-dispersed carbon dots achieved by microwave-assisted selective carbonization of surfactants and their applications as fluorescent nano-additives[J]. Journal of Materials Chemistry A, 2020, 8(40): 21317-21326. |
[35] |
LI Weidong, LIU Yuan, WANG Boyang, et al. Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging[J]. Chinese Chemical Letters, 2019, 30(12): 2323-2327.
doi: 10.1016/j.cclet.2019.06.040 |
[36] |
WU Yuhang, MA Guocong, ZHANG Anying, et al. Preparation of carbon dots with ultrahigh fluorescence quantum yield based on PET waste[J]. ACS Omega, 2022, 7(42): 38037-38044.
doi: 10.1021/acsomega.2c05324 pmid: 36312408 |
[37] | LI Jingli, LIANG Qianqian, LU Ai, et al. The crystallization behaviors of copolymeric flame-retardant poly(ethylene terephthalate) with organophos-phorus[J]. Polymer Composites, 2013, 34(6): 867-876. |
[38] | XUE Baoxia, NIU Mei, YANG Yongzhen, et al. Influence of graphitization degree of carbon microspheres on properties of PET flame retardant[J]. Polymer Engineering & Science, 2018, 58(8): 1399-1408. |
[39] | WANG Rui, WANG Wenqing, WANG Fanghe, et al. Construction of nano-multilayer coatings on copolyester fabrics using UV-grafting mediated layer-by-layer self-assembly for improved anti-droplet and flame retardent performance[J]. Polymer Degradation and Stability, 2021. DOI:10.1016/j.polymdegradstab.2020.109405. |
[40] | DIDANE Nizar, GIRAUD Stephane, DEVAUX Eric, et al. Thermal and fire resistance of fibrous materials made by PET containing flame retardant agents[J]. Polymer Degradation and Stability, 2012, 97(12): 2545-2551. |
[41] | AO Xiang, DU Ya, YU Dan, et al. Synthesis, characterization of a DOPO-based polymeric flame retardant and its application in polyethylene terephthalate[J]. Progress in Natural Science: Materials International, 2020, 30(2): 200-207. |
[1] | 袁野, 张安莹, 魏丽菲, 高建伟, 陈咏, 王锐. 含磷阻燃聚酯的合成动力学及其性能[J]. 纺织学报, 2024, 45(04): 50-58. |
[2] | 谢艳霞, 张唯强, 徐亚宁, 赵书涵, 尹雯萱, 张文强, 韩旭. 商用聚对苯二甲酸乙二醇酯短纤维中低聚物析出机制及影响因素[J]. 纺织学报, 2024, 45(01): 65-73. |
[3] | 姚晨曦, 万爱兰. 聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯纬编运动T恤面料的热湿舒适性[J]. 纺织学报, 2024, 45(01): 90-98. |
[4] | 肖云超, 杨雅茹, 郭健鑫, 王童谣, 田强. 高温自交联抗熔滴阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 151-159. |
[5] | 谭晶, 石鑫, 于景超, 程礼盛, 杨涛, 杨卫民. 聚合物热解制备玻璃纤维表面碳纳米涂层及其导电性[J]. 纺织学报, 2023, 44(11): 36-44. |
[6] | 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26. |
[7] | 庞明科, 王淑花, 史晟, 薛立钟, 郭红, 高承永, 卢建军, 赵晓婉, 王子涵. 废旧聚对苯二甲酸乙二醇酯纤维醇解制备阻燃水性聚氨酯及其应用[J]. 纺织学报, 2023, 44(02): 214-221. |
[8] | 廖云珍, 朱亚楠, 葛明桥, 孙同明, 张欣宇. 聚对苯二甲酸乙二醇酯/SrAl2O4:Eu2+,Dy3+含杂纤维醇解及其回收产物性能[J]. 纺织学报, 2023, 44(02): 44-54. |
[9] | 任嘉玮, 张圣明, 吉鹏, 王朝生, 王华平. 磷硅改性阻燃抑熔滴聚酯纤维的制备及其性能[J]. 纺织学报, 2023, 44(02): 1-10. |
[10] | 李宝洁, 朱元昭, 钟毅, 徐红, 毛志平. 聚磷腈改性沸石咪唑酯骨架材料的制备及其在聚酯阻燃中的应用[J]. 纺织学报, 2022, 43(11): 104-112. |
[11] | 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100. |
[12] | 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39. |
[13] | 李平阳, 付灿, 董玲玲. 阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2022, 43(06): 107-114. |
[14] | 黄益婷, 程献伟, 关晋平, 陈国强. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(06): 94-99. |
[15] | 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49. |
|