纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 219-226.doi: 10.13475/j.fzxb.20230605002
王建1,2,3, 张蕊2,3, 郑莹莹3, 董正梅3, 邹专勇2,3()
WANG Jian1,2,3, ZHANG Rui2,3, ZHENG Yingying3, DONG Zhengmei3, ZOU Zhuanyong2,3()
摘要:
二维过渡金属碳/氮化合物(MXene)具有二维层状结构、高导电性、亲水性和高比表面积等独特的优势,为挖掘其在柔性纺织压力传感器上的应用价值,对近几年基于MXene材料所制备的柔性纺织压力传感器的研究和发展现状及应用进行了综述。介绍了MXene材料的性能和主要制备方法即氢氟酸刻蚀法、原位形成氢氟酸刻蚀法、熔融盐刻蚀法、浓碱法、溶液相絮凝法、电化学法和水热法;分析了MXene材料在压阻式、电容式、压电式以及摩擦电式压力传感器中的主要作用机制,且对其性能和应用领域进行分类与探讨,包括健康和运动监测、人机交互以及基于集成阵列的空间压力映射领域等;同时根据MXene材料优异的性能,展望了其在柔性纺织压力传感器中的应用前景。
中图分类号:
[1] | MA C, MA M G, SI C, et al. Flexible MXene-based composites for wearable devices[J]. Advanced Functional Materials, 2021, 31(22): 1-9 |
[2] | LIU H X, WANG L, LIU G M, et al. Recent progress in the fabrication of flexible materials for wearable sensors[J]. Biomaterials Science, 2022, 10: 614-632. |
[3] | SHEN B, ZHAI W, ZHENG W. Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials, 2014, 24(28): 4542-4548. |
[4] | WEN B, CAO M S, HOU Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon, 2013, 65: 124-139. |
[5] | HUANG J, LI Z, MAO Y, et al. Progress and biomedical applications of MXenes[J]. Nano Select, 2021, 2(8): 1480-1508. |
[6] | LIPATOV A, LU H D, ALHABEB M, et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers[J]. Science Advances, 2018, 4(6): 1-8 |
[7] | LIPATOV A, GOAD A, LOES M J, et al. High electrical conductivity and breakdown current density of individual monolayer Ti3C2Tx MXene flakes[J]. Matter, 2021, 4(4):1413-1427. |
[8] | 梁程, 程群峰. MXene纤维的制备、性能及应用研究进展[J]. 复合材料学报, 2022, 39(9): 4227-4243. |
LIANG Cheng, CHENG Qunfeng. Progress in preparation, properties and applications of MXene fiber[J]. Journal of Composites, 2022, 39(9):4227-4243. | |
[9] |
严小飞, 方杰, 朱晨凯, 等. 二维材料MXene(Ti3C2Tx)的制备、性能及其在纺织领域中的应用[J]. 现代纺织技术, 2022, 30(2): 1-8,35.
doi: 10.19398/j.att.202105030 |
YAN Xiaofei, FANG Jie, ZHU Chenkai, et al. Preparation and propersties of two-dimensional material MXene(Ti3C2Tx) and its application in textile field[J]. Advanced Textile Technology, 2022, 30(2):1-8,35.
doi: 10.19398/j.att.202105030 |
|
[10] | WEI Y, ZHANG P, SOOMRO R A, et al. Advances in the synthesis of 2D MXenes[J]. Advanced Materials, 2021.DOI:10.1002/adma.202103148 |
[11] | NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. |
[12] | ZHOU C, ZHAO X, XIONG Y, et al. A review of etching methods of MXene and applications of MXene conductive hydrogels[J]. European Polymer Journal, 2022. DOI: 10.1016/j.eurpolymj.2022.111063. |
[13] | ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2): 1-17. |
[14] | GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. |
[15] | 丁姗姗, 娄耀元, 汪滨, 等. MXene的制备及应用进展[J]. 高分子通报, 2022(9):16-26. |
DING Shanshan, LOU Yaoyuan, WANG Bin, et al. Preparation and application of MXene[J]. Chinese Polymer Bulletin, 2022(9): 16-26. | |
[16] |
王杰, 郝玮, 胥生元, 等. 二维材料MXene的制备与电学性能研究进展[J]. 功能材料, 2022, 53(3): 3048-3057.
doi: 10.3969/j.issn.1001-9731.2022.03.007 |
WANG Jie, HAO Wei, XU Shengyuan, et al. Progress in the preparation and electrical properties of two-dimensional material MXene[J]. Function Materials, 2022, 53(3): 3048-3057. | |
[17] |
LI M, LU J, LUO K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141(11): 4730-4737.
doi: 10.1021/jacs.9b00574 pmid: 30821963 |
[18] |
LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19(8): 894-899.
doi: 10.1038/s41563-020-0657-0 pmid: 32284597 |
[19] | DONG H, XIAO P, JIN N, et al. Molten salt derived Nb2CTx MXene anode for Li-ion batteries[J]. Chem Electro Chem, 2021, 8(5): 957-962. |
[20] | 何世宇. 熔融盐-MXene的制备及其电化学性能研究[D]. 北京: 北京化工大学,2021:1-56. |
HE Shiyu. Preparation and electrochemical properties of molten salt-Mxene[D]. Beijing: Beijing University of Chemical Technology,2021:1-56. | |
[21] | LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T= OH, O) via alkali treat-ment[J]. Angewandte Chemie International Edition, 2018, 57(21): 6115-6119. |
[22] | ZHANG S, HUANG P, WANG J, et al. Fast and universal solution-phase flocculation strategy for scalable synthesis of various few-layered MXene powders[J]. The Journal of Physical Chemistry Letters, 2020, 11(4): 1247-1254. |
[23] | YANG S, ZHANG P, WANG F, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system[J]. Angewandte Chemie, 2018, 130(47): 15717-15721. |
[24] | KUMAR J A, PRAKASH P, KRITHIGA T, et al. Methods of synthesis, characteristics, and environmental applications of MXene: a comprehensive review[J]. Chemosphere, 2022, 286: 1-12. |
[25] | CHENG Y, ZHANG Y, LI Y, et al. Hierarchical Ni2P/Cr2CTx (MXene) composites with oxidized surface groups as efficient bifunctional electrocatalysts for overall water splitting[J]. Journal of Materials Chemistry A, 2019, 7(15): 9324-9334. |
[26] | HE J, ZHANG Y, ZHOU R, et al. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects[J]. Journal of Materiomics, 2020, 6(1): 86-101. |
[27] | HAMMOCK M L, CHORTOS A, TEE B C K, et al. 25th anniversary article: the evolution of electronic skin (E-skin): a brief history, design considerations, and recent progress[J]. Advanced Materials, 2013, 25(42): 5997-6038. |
[28] | CHEN S, JIANG K, LOU Z, et al. Recent developments in graphene-based tactile sensors and E-skins[J]. Advanced Materials Technologies, 2018, 3(2): 1700248. |
[29] | MA Y, LIU N, LI L, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances[J]. Nature Communications, 2017, 8(1): 1-8. |
[30] | HE J, SHI F, LIU Q, et al. Wearable superhydrophobic PPy/MXene pressure sensor based on cotton fabric with superior sensitivity for human detection and information transmission[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022. DOI:10.1016/j.colsurfa.2022.128676. |
[31] | YAN J, MA Y, JIA G, et al. Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor[J]. Chemical Engineering Journal, 2022.DOI:10.1016/j.cej.2021.133458. |
[32] | LUO J, GAO S, LUO H, et al. Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics[J]. Chemical Engineering Journal, 2021, 406:1-10 |
[33] | SU Z, XU D, LIU Y, et al. Advances in the synthesis of 2D MXenes[J]. ACS Applied Electronic Materials, 2023, 15(26):32002-32010. |
[34] | 王杰, 汪滨, 安泊儒, 等. 电容式柔性压力传感器的研究进展[J]. 北京服装学院学报(自然科学版), 2020, 40(1): 81-90. |
WANG Jie, WANG Bin, AN Boru, et al. Research progress of capacitive flexible pressure sensor[J]. Journal of Beijing Institute of Fashion Techno-logy(Natural Science Edition), 2020, 40(1): 81-90. | |
[35] | GOLABZAEI S, KHAJAVI R, SHAYANFAR H A, et al. Fabrication and characterization of a flexible capacitive sensor on PET fabric[J]. International Journal of Clothing Science and Technology, 2018, 30(5): 687-697. |
[36] | LEI D, LIU N, SU T, et al. Roles of MXene in pressure sensing: preparation, composite structure design, and mechanism[J]. Advanced Materials, 2022.DOI:10.1002/adms.2110608. |
[37] | WANG S, DU X, LUO Y, et al. Hierarchical design of waterproof, highly sensitive, and wearable sensing electronics based on MXene-reinforced durable cotton fabrics[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej.2020. |
[38] | WANG P, LI G, LIU J, et al. Flexible, freestanding, ultrasensitive, and iontronic tactile sensing textile[J]. ACS Applied Electronic Materials, 2021, 3(5): 2195-2202. |
[39] |
ZHANG L, ZHANG S, WANG C, et al. Highly sensitive capacitive flexible pressure sensor based on a high-permittivity MXene nanocomposite and 3D network electrode for wearable electronics[J]. ACS Sensors, 2021, 6(7): 2630-2641.
doi: 10.1021/acssensors.1c00484 pmid: 34228442 |
[40] | LI X, HAO J, LIU R, et al. Interfacing MXene flakes on fiber fabric as an ultrafast electron transport layer for high performance textile electrodes[J]. Energy Storage Materials, 2020, 33: 62-70. |
[41] | UZUN S, SEYEDIN S, STOLTZFUS A L, et al. Knittable and washable multifunctional MXene-coated cellulose yarns[J]. Advanced Functional Materials, 2019.DOI:10.1002/adfm.1905015. |
[42] | WAN Y, WANG Y, GUO C F. Recent progresses on flexible tactile sensors[J]. Materials Today Physics, 2017, 1: 61-73. |
[43] | LIU X, TONG J, WANG J, et al. BaTiO3/MXene/PVDF-TrFE composite films via an electrospinning method for flexible piezoelectric pressure sensors[J]. Journal of Materials Chemistry C, 2023, 11(14): 4614-4622. |
[44] | WANG S, SHAO H Q, LIU Y, et al. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor[J]. Composites Science and Technology, 2021, 202(9):1-8. |
[45] |
WANG Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano, 2013, 7(11): 9533-9557.
doi: 10.1021/nn404614z pmid: 24079963 |
[46] | ZHANG J, ZHANG Y, LI Y, et al. Textile-based flexible pressure sensors: a review[J]. Polymer Reviews, 2022, 62(1): 65-94. |
[47] | HUANG J, HAO Y, ZHAO M, et al. All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self-powered wearable sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24774-24784. |
[48] | GUO J, ZHOU B, ZONG R, et al. Stretchable and highly sensitive optical strain sensors for human-activity monitoring and healthcare[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 33589-33598. |
[49] | LIU L, WANG L, LIU X, et al. High-performance wearable strain sensor based on MXene@cotton fabric with network structure[J]. Nanomaterials, 2021.DOI:10.3390/nano11040889 |
[50] | YUAN L, ZHANG M, ZHAO T, et al. Flexible and breathable strain sensor with high performance based on MXene/nylon fabric network[J]. Sensors and Actuators A: Physical, 2020.DOI:10.1016/j.sna.2020.112192. |
[51] | YANG J, LI H, CHENG J, et al. Nanocellulose intercalation to boost the performance of MXene pressure sensor for human interactive monitoring[J]. Journal of Materials Science, 2021, 56(24): 13859-13873. |
[52] | WANG L, JIANG K, SHEN G. Wearable, implantable, and interventional medical devices based on smart electronic skins[J]. Advanced Materials Technologies, 2021.DOI:10.1002/admt.2100107. |
[53] | LIU R, LI J, LI M, et al. MXene-coated air-permeable pressure-sensing fabric for smart wear[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46446-46454. |
[54] | FU X, LI L, CHEN S, et al. Knitted Ti3C2Tx MXene based fiber strain sensor for human-computer inte-raction[J]. Journal of Colloid and Interface Science, 2021, 604: 643-649. |
[55] | ZHANG L, HE J, LIAO Y, et al. A self-protective, reproducible textile sensor with high performance towards human-machine interactions[J]. Journal of Materials Chemistry A, 2019, 7(46): 26631-26640. |
[56] | ZHANG C, LIU S, HUANG X, et al. A stretchable dual-mode sensor array for multifunctional robotic electronic skin[J]. Nano Energy, 2019, 62: 164-170. |
[57] | ZHENG Y, YIN R, ZHAO Y, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej.2020.127720. |
[58] |
LI T, CHEN L, YANG X, et al. A flexible pressure sensor based on an MXene-textile network structure[J]. Journal of Materials Chemistry C, 2019, 7(4): 1022-1027.
doi: 10.1039/c8tc04893b |
[1] | 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32. |
[2] | 李港华, 王航, 史宝会, 曲丽君, 田明伟. 柔性电子织物的构筑及其压力传感性能[J]. 纺织学报, 2023, 44(02): 96-102. |
[3] | 彭来湖, 王罗俊, 胡旭东, 吴振辉, 袁嫣红. 磁保持电子选针器及串行总线提花系统设计[J]. 纺织学报, 2019, 40(01): 136-141. |
[4] | 刘亚男 丛杉. 可穿戴技术在人体健康监测中的应用进展[J]. 纺织学报, 2018, 39(10): 175-179. |
[5] | 贾树生 万振凯 杨连贺 张恒杰. 碳纳米线的拉伸应变传感特性[J]. 纺织学报, 2018, 39(03): 14-18. |
[6] | 贾树生 杨连贺 白会肖 万振凯 . 嵌入三维编织复合材料的碳纳米线应变传感特性[J]. 纺织学报, 2018, 39(01): 11-18. |
[7] | 汪静;金玉珍;胡旭东;谢永良;何伟强. 基于Win CE 的喷气织机人机交互系统设计[J]. 纺织学报, 2010, 31(7): 122-126. |
[8] | 陆镭;刘晓刚. 服装设计数字化现状与发展思路[J]. 纺织学报, 2005, 26(5): 135-136. |
|