纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 23-31.doi: 10.13475/j.fzxb.20230102001
XU Zhenkai, MA Ming, LIN Duojia, LIU Hang, ZHANG Jianfeng, XIA Xin()
摘要:
为探究聚吡咙基碳纤维作为自支撑负极材料的电化学性能,将聚羧酸铵盐(PCAAS)和不同质量分数的聚氧乙烯(PEO)混合溶液通过静电纺丝技术制备成前驱体纳米纤维,在500 ℃下亚胺化、环化形成聚吡咙(BBB)纤维,800 ℃下炭化形成聚吡咙基碳纤维(BCF),将BCF作为负极材料装配成锂离子电池,探究不同质量分数PEO对BCF形貌结构和电化学性能的影响。结果表明:当PEO质量分数为6%时,前驱体纳米纤维表面光滑且直径均匀,炭化后的BCF直径减小了24.2%;聚吡咙作为芳杂环聚合物有密集的碳链,经炭化后含碳量高达97.5%;且咪唑和吡咯的残留N导致较多无序碳的产生,N上的孤对电子作为载体促进电子迁移,并为Li+提供了更多活性位点;在恒流充放电循环中,50 mA/g的电流密度下循环100圈后仍具有422.3 mA·h/g的放电比容量。
中图分类号:
[1] | INAGAKI M, YANG Y, KANG F Y. Carbon nanofibers prepared via electrospinning[J]. Advanced Materials, 2012, 24(19): 2547-2566. |
[2] | ZHANG B, KANG F, TARASCON J M, et al. Recentadvances in electrospun carbon nanofibers and their application in electrochemical energy storage[J]. Prog Mater Sci, 2016, 76: 319-380. |
[3] |
康卫民, 范兰兰, 邓南平, 等. 静电纺丝多孔碳纳米纤维制备与应用研究进展[J]. 纺织学报, 2017, 38(11): 168-176.
doi: 10.13475/j.fzxb.20161204209 |
KANG Weimin, FAN Lanlan, DENG Nanping, et al. Research progress in preparation and application of electrospinning porous carbon nanofibers[J]. Journal of Textile Research, 2017, 38(11): 168-176.
doi: 10.13475/j.fzxb.20161204209 |
|
[4] | ZHANG L, ABOAGYE A, KELKAR A, et al. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications[J]. J Mater Sci, 2013, 49: 463-480. |
[5] | DUAN G, ZHANG H, JIANG S, et al. Modification of precursor polymer using co-polymerization: a good way to high performance electrospun carbon nanofiber bundles[J]. Mater Lett, 2014, 122: 178-181. |
[6] | ZHU Jian, DING Yichun, LIAO Xiaojian, et al. Highly flexible electrospun carbon/graphite nanofibers from a non-processable heterocyclic rigid-rod polymer of polybisbenzimidazobenzophenanthroline-dione (BBB)[J]. Journal of Materials Science, 2018, 53(12): 9002-9012. |
[7] | BRISENO Alejandro L, MANNSFELD Stefan C B, SHAMBERGER Patrick J, et al. Self-assembly, molecular packing, and electron transport in n-type polymer semiconductor nanobelts[J]. Chemistry of Materials, 2008, 20(14): 4712-4719. |
[8] |
ZHU Jian, DING Yichun, SEEMA Agarwal, et al. Nanofiber preparation of non-processable polymers by solid-state polymerization of molecularly self-assembled monomers[J]. Nanoscale, 2017, 9(46): 18169-18174.
doi: 10.1039/c7nr07159k pmid: 29139517 |
[9] | JUNG K H, FERRARIS J P. Preparation and electrochemical properties of carbon nanofibers derived from polybenzimidazole/polyimide precursor blends[J]. Carbon, 2012, 50(14): 5309-5315. |
[10] | LIU Jingang, ZHAO Xiaojuan, XIA Hai, et al. Novel high temperature polypyrrolones with asymmetric biphenyl moieties in the main chain: synthesis and characterization[J]. Macromolecular Chemistry and Physics, 2006, 207: 1272-1277. |
[11] | 何永武. 二次电池碳基电极材料制备及其电化学性能研究[D]. 天津: 天津大学, 2019: 53. |
HE Yongwu. Preparation and electrochemical performance of carbon-based electrode materials for secondary batteries[D]. Tianjin: Tianjin University, 2019. | |
[12] | LIU Shuwu, ZENG Yue, FANG Hong, et al. Flexible polypyrrolone-based microporous carbon nanofibers for high-performance supercapacitors[J]. RSC Adcances, 2018, 8: 25568-25574. |
[13] | CHEN Shuiliang, HE Shuijian, HOU Haoqing. Electrospinning technology for applications in supercapacitors[J]. Current Organic Chemistry, 2013, 17(13): 1402-1410. |
[14] |
LI Yingzhi, DONG Jie, ZHANG Junxian, et al. Nitrogen-doped carbon membrane derived from polyimide as free-standing electrodes for flexible supercapa-citors[J]. Small, 2015, 11: 3476-3484.
doi: 10.1002/smll.201403575 pmid: 25801961 |
[15] | 瞿梅梅. 预氧化碳化工艺对电纺 PAN 基碳纤维结构性能的影响[D]. 北京: 北京化工大学,2016:6-14. |
QU Meimei. Effects of stabilization and carbonization on structural and mechnical properties of electrospun PAN based carbon fibers and structures of precursor nanofibers[D]. Beijing: Beijing University of Chemical Technology, 2016: 6-14. | |
[16] | LI Yibing, ZHANG Haimin, WANG Yun, et al. A self-sponsored doping approach for controllable synthesis of S and N co-doped trimodal-porous structured graphitic carbon electrocatalysts[J]. Energy & Environmental Science, 2014, 7: 3720-3726. |
[17] | CHEN Huanhui, HE Jiao, LI Yongliang, et al. Hierarchical CuOx-Co3O4 heterostructure nanowires decorated on 3D porous nitrogen-doped carbon nanofibers as flexible and free-standing anodes for high performance lithium-ion batteries[J]. Journal of Chemistry A, 2019, 7: 7691-7700. |
[18] |
CATHERINE K, YAACOBI-GROSS N, BURNETT E K, et al. Use of side-chain for rational design of n-type diketopyrrolopyrrole-based conjugated polymers: what did we find out?[J]. Physical Chemistry Chemical Physics, 2014, 16(32): 17253-17265.
doi: 10.1039/c4cp02322f pmid: 25017861 |
[19] | 杜强, 张一鸣, 田爽, 等. 锂离子电池SEI膜形成机理及化成工艺影响[J]. 电源技术, 2018, 42(12): 1922-1926. |
DU Qiang, ZHANG Yiming, TIAN Shuang, et al. Formation mechanism of solid electrolyte inter-phase(SEI) and effect of formation process on it in lithium ion batteries[J]. Chinese Journal of Power Sources, 2018, 42(12): 1922-1926. | |
[20] |
KIM Hyunwoo, CHOI Woosung, YOON Jaesang, et al. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries[J]. Chemical Reviews, 2020, 120(14): 6934-6976.
doi: 10.1021/acs.chemrev.9b00618 pmid: 32101429 |
[21] | ZHANG S, YAO F, YANG L, et al. Sulfur-doped mesoporous carbon from surfactant-intercalated layered double hydroxide precursor as high-performance anode nanomaterials for both Li-ion and Na-ion batteries[J]. Carbon, 2015, 93: 143-150. |
[22] | CHEN Biao, MENG Yuhuan, HE Fang, et al. Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped graphene heterostructure for promising lithium-ion batteries[J]. Nano Energy, 2017, 41: 154-163. |
[23] | 曾悦. 柔性、 多孔聚吡咙基碳纳米纤维膜的制备及其储电性能研究[D]. 南昌: 江西师范大学,2017: 16. |
ZENG Yue. Flexible and porous carbon nanofibers based on polypyrrilone: preparation and their charge storage performance[D]. Nanchang: Jiangxi Normal University, 2017:16. | |
[24] | ZHOU Xiaoming, LIU Yang, DU Chunyu, et al. A free-standing sandwich-type graphene/nanocellulose/silicon laminar anode for flexible rechargeable lithium ion batteries[J]. ACS Appl Mater Interfaces, 2018, 10(35): 29638-29646. |
[1] | 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23. |
[2] | 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239. |
[3] | 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209. |
[4] | 高志浩, 宁新, 明津法. 生物质基碳气凝胶及其在储能器件中应用研究进展[J]. 纺织学报, 2024, 45(06): 210-218. |
[5] | 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38. |
[6] | 栗志坤, 于影, 左雨欣, 史豪秦, 金玉珍, 陈洪立. 聚丙烯腈/二硫化钼复合薄膜的挠曲电效应分析及其应用[J]. 纺织学报, 2024, 45(05): 27-34. |
[7] | 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23. |
[8] | 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32. |
[9] | 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66. |
[10] | 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75. |
[11] | 杨琪, 邓南平, 程博闻, 康卫民. 树枝状磺化聚醚砜纤维基复合固态电解质的制备及其性能[J]. 纺织学报, 2024, 45(03): 1-10. |
[12] | 赵美奇, 陈莉, 钱现, 李晓娜, 杜迅. 用于铜离子检测的静电纺纤维膜制备及其性能[J]. 纺织学报, 2024, 45(03): 11-18. |
[13] | 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20. |
[14] | 周歆如, 范梦晶, 岳欣琰, 洪剑寒, 韩潇. 导电微纳纤维复合纱的制备及其气敏特性[J]. 纺织学报, 2024, 45(02): 52-58. |
[15] | 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55. |
|