纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 59-67.doi: 10.13475/j.fzxb.20230103501

• 纺织工程 • 上一篇    下一篇

基于变形网格的织物悬垂形态模拟

曹竞哲, 陶晨(), 白琳琳   

  1. 绍兴文理学院 纺织服装学院, 浙江 绍兴 312000
  • 收稿日期:2023-01-29 修回日期:2023-05-21 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 陶晨(1981—),男,副教授,博士。主要研究方向为纺织服装数字化技术。E-mail: xtao98@qq.com
  • 作者简介:曹竞哲(1996—),男,硕士生。主要研究方向为纺织服装数字化技术。
  • 基金资助:
    教育部人文社会科学研究项目(23YJC760001);浙江省社科联合研究课题(75047);绍兴文理学院学生科研项目(Y20220703)

Fabric drape profile simulation based on deformable mesh

CAO Jingzhe, TAO Chen(), BAI Linlin   

  1. College of Textile and Garment, Shaoxing University, Shaoxing, Zhejiang 312000, China
  • Received:2023-01-29 Revised:2023-05-21 Published:2024-06-15 Online:2024-06-15

摘要:

为快速有效地模拟织物下垂过程、再现真实织物的悬垂形态解决织物约束形态的仿真问题,提出一个变形网格模型用于再现织物悬垂。在模型理论方面,围绕约束因子与衰减因子构建织物内部约束,通过接触-抵消机制复现织物柔性体与刚性平面的接触。在模型精度上,从网格规模和推演算法2个方面展开探讨,提出了合理的网格规模以达成效果与资源的平衡,并通过三阶泰勒展开减小了运算误差,提升了算法精度。本研究提出的变形网格模型,将悬垂视为动态变化的过程,实现了悬垂形态与悬垂过程的统一。模拟实验表明,真实织物内部的相互作用在模型理论及参数中得到了高度凝练的表达,体现模型特性的虚拟悬垂系数完整覆盖其实际取值区间,波纹不匀作为另一重要形态指标也得到充分表现,模型算法的精度较常规方法提升一个数量级。

关键词: 变形网格, 织物模拟, 织物悬垂, 悬垂系数, 悬垂不匀

Abstract:

Objective In allusion to the stitch of constrained fabric simulation, this paper proposes a deformable mesh for reproducing the drape profile of fabric. Aiming to represent the dynamic process rather than static form of the fabric drape, the mesh model is featured with kinetic parameters and an evolution process to enable shape change over time.

Method In the mesh model, the constraints inside the fabric were built up through a constraint factor as well as an attenuation factor, and the contact between the fabric flexible body and the rigid plane was performed with a Touch-Counteract mechanism. The forces on the particles in the mesh, which were calculated with mesh deformation, were then used to generate the further displacement of the mesh. The evolution of the mesh was brought up by step-by-step iteration to introduce draping kinetics of the virtual fabric.

Results The drape profile of virtual fabric is achieved as the evolution processs meets its steady state. The drape coefficient is then worked out through identifying and quantifying the projection area of the mesh. The impact of the constraint factor and the attenuation factor on the drape coefficient are investigated, which has revealed the features and range of the model parameters capability. With lower attenuation factor (e=0.6), larger drape coefficient can be brought about while the range of the drape is narrow, and the drape is mainly affected by the attenuation factor and the effect from the constraint factor is relatively minor. When the attenuation factor grows (e=1.2 or e=2.4), smaller drape can be achieved while the range of the drape gets broader, and the constraint factor becomes more influential. When the attenuation factor goes up to 3.6 plus, the range of the drape turns to shrink, and the influence from the constraint factor recedes again. The upper limit of the range for the drape approximates 1.0 when the attenuation factor gets close to zero, and the lower limit of the range approaches 0 when the attenuation factor grows. Therefore, the theoretical range (0,1) of the drape coefficient gets fully covered with the mesh. Concerning the unevenness ripples, the reason for real fabric is discussed and reduced into the mechanical anisotropy. By emulating anisotropy through the differentiated constraint factors, the uneven appearance along the draping surface is manipulated and manifested. Finally, the precise of the model is boosted with respect to the mesh scale as well as the evolution algorithm, and a sensible mesh scale value 57 has been figured out for balancing between the simulation effect and the resource consumption. By employing the third-order Tylor expansion, the computational error is minished and the precision of the evolution algorithm is raised up to Ot4).

Conclusion It has turned out in the simulation experiments this mesh to be a simple, fast and precise model for expressing fabric draping. In the mesh model, the constraint factor and the attenuation factor together have been testified to be a compact approach to expressing the mutual effects between different parts of the real fabric. By recognizing and quantifying the projection area, the drape coefficient of the virtual fabric well meet the theoretic range of it. The drape coefficient has been found positively related to the constraint factor, and negatively related to the attenuation factor, and the latter has comparatively more impact on the drape coefficient. There are two kinds of precision involved in this model, i.e., the mesh precision and the algorithm precision. The former is determined by the mesh scale, and an appropriate scale has proved to be a trade-off between precision and efficiency considering the rapid growth of computational resource demand along the scale. While the algorithm precision can be improved significantly with the third-order Tylor expansion.

Key words: deformable mesh, fabric simulation, fabric drape, drape coefficient, drape unevenness

中图分类号: 

  • TP391.41

图1

模型示意"

图2

变量依赖关系"

图3

虚拟织物悬垂过程 注:此处时间t只具有比较意义,实际时间取决于硬件系统的运算能力。"

图4

投影区域提取"

图5

不同参数值下虚拟织物悬垂形态 注:以上数据来自m=0.001、N=60的织物网格。"

图6

模型的表达特性"

图7

波纹曲线"

图8

织物的异向性"

图9

不同异向指数下的波纹不匀率 注:U=0情况下产生的极小不匀率,是数字系统中积累的误差所致。"

图10

不同网格精度下的悬垂形态"

图11

网格规模与悬垂系数的关系"

[1] 郑天勇. 变化组织的三维外观模拟[J]. 纺织学报, 2005, 26(6): 39-42.
ZHENG Tianyong. 3D appearance imitation of fancy weaves[J]. Journal of Textile Research, 2005, 26(6): 39-42.
[2] 赖安琪, 蒋高明, 李炳贤. 全成形毛衫花式结构三维仿真[J]. 纺织学报, 2023, 44(2): 103-110.
LAI Anqi, JIANG Gaoming, LI Bingxian. Three-dimensional simulation of whole garment with fancy structures[J]. Journal of Textile Research, 2023, 44(2): 103-110.
[3] KANG Moon Koo, LEE Jeongjin. A real-time cloth draping simulation algorithm using conjugate harmonic functions[J]. Computers & Graphics, 2007, 31(2): 271-279.
[4] 沈毅, 齐红衢. 织物悬垂形态的模拟仿真[J]. 纺织学报, 2010, 31(10): 34-39.
SHEN Yi, QI Hongqu. Simulation of fabric draping shape[J]. Journal of Textile Research, 2010, 31(10): 34-39.
[5] JIA Lu, ZHENG Chao. Dynamic cloth simulation by isogeometric analysis[J]. Computer Methods In Applied Mechanics and Engineering, 2014. DOI: 10.1016/j.cma.2013.09.016.
[6] DENG Daiguo, WU Hefeng, SUN Peng, et al. A new geometric modeling approach for woven fabric based on frenet frame and spiral equation[J]. Journal of Computational and Applied Mathematics, 2018, 329: 84-94.
[7] WANG Huamin, O'BRIEN James, RAMAMOORTHI Ravi. Data-driven elastic models for cloth: modeling and measurement[J]. ACM Transactions on Graphics, 2011, 30(4): 1-12.
[8] 余志才. 基于三维模型和深度学习的织物悬垂性能研究[D]. 上海: 东华大学, 2020:7-29.
YU Zhicai. Research on fabric draping performance based on 3D model and deep learning[D]. Shanghai: Donghua University, 2020: 7-29.
[9] YAN Jiang, GUO Ruiliang, MA Fenfen, et al. Cloth simulation for Chinese traditional costumes[J]. Multimedia Tools and Applications, 2019, 78(4): 5025-5050.
doi: 10.1007/s11042-018-5983-8
[10] SZE K Y, LIU X H. Fabric drape simulation by solid-shell finite element method[J]. Finite Elements in Analysis and Design, 2007, 43(11): 819-838.
[11] XIE Q, SZE K Y, ZHOU Y X. Drape simulation using solid-shell elements and adaptive mesh subdivision[J]. Finite Elements in Analysis and Design, 2015. DOI:10.1016/j.finel.2015.08.001.
[12] HAN Mingu, CHANG Seunghwan. Draping simulations of carbon/epoxy fabric prepregs using a non-orthogonal constitutive model considering bending behavior[J]. Composites Part A: Applied Science and Manufacturing, 2021. DOI:10.1016/j.compositesa.2021.106483.
[13] ZHANG Jiahua, GEORGE Baciu, JUSTIN Cameron, et al. Particle pair system: an interlaced mass-spring system for real-time woven fabric simulation[J]. Textile Research Journal, 2012, 82(7): 655-666.
[14] YIN Chen, WANG Q Jane, ZHANG Mengqi. Accurate simulation of draped fabric sheets with nonlinear modeling[J]. Textile Research Journal, 2021, 92(3/4): 539-560.
[15] MOZAFARY Vajiha, PEDRAM Payvandy. Introducing and optimizing a novel mesh for simulating knitted fabric[J]. Journal of the Textile Institute, 2018, 109(2): 202-218.
[16] FITAS Ricardo, STEFAN Hesseler, SANTINO Wist, et al. Kinematic draping simulation optimization of a composite B-pillar geometry using particle swarm optimization[J]. Heliyon, 2022.DOI:10.1016/j.heliyon.2022.e11525.
[1] 徐辉, 朱昊, 潘苏情, 史红艳, 应迪. 基于变截面复丝模型的机织物模拟[J]. 纺织学报, 2024, 45(05): 70-78.
[2] 李新彤, 高哲, 顾洪阳, 丛洪莲. 针织西服面料的挺括风格研究[J]. 纺织学报, 2020, 41(11): 53-58.
[3] 刘成霞 周澳. 利用十字交叉法测试织物弯曲悬垂性[J]. 纺织学报, 2018, 39(06): 42-46.
[4] 张继东 薛元 张杰 郭明瑞 魏晓婷 高卫东 . 应用混色纱纹理信息的纬编针织物模拟[J]. 纺织学报, 2017, 38(07): 148-154.
[5] 李哲. 面料性能与缩褶吃量的相关性[J]. 纺织学报, 2009, 30(9): 98-101.
[6] 张瑞林;王文正;郭炜杰. 一种改进的织物外观真实感模拟高效算法[J]. 纺织学报, 2009, 30(05): 126-129.
[7] 林志贵;房 伟;黄伟志. 基于支持向量机的织物悬垂性能评估分析[J]. 纺织学报, 2009, 30(01): 51-54.
[8] 陈明;周华;杨兰君;李斌. 织物三维悬垂形态测试指标与三维重建[J]. 纺织学报, 2008, 29(9): 51-55.
[9] 陈莉;叶介茂. 基于数学函数的针织物花型设计方法初探[J]. 纺织学报, 2008, 29(7): 38-40.
[10] 李强;过玉清;纪峰. 基于仰视投影的织物悬垂性测试方法[J]. 纺织学报, 2008, 29(3): 34-37.
[11] 沈毅;周华;尹红媛. ZYF-3型织物悬垂三维测试仪的研制[J]. 纺织学报, 2008, 29(1): 118-122.
[12] 刘玄木;沈毅;王寿兵. 织物悬垂测试系统中织物边缘的识别[J]. 纺织学报, 2006, 27(3): 8-10.
[13] 黄新林;李汝勤. 织物静态悬垂系数试验时间的确定[J]. 纺织学报, 2006, 27(10): 14-17.
[14] 张森林;姜位洪. 织物计算机模拟设计的实现[J]. 纺织学报, 2004, 25(06): 81-84.
[15] 赵丽红. 用支持向量机预测织物的悬垂性能[J]. 纺织学报, 2004, 25(06): 71-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!