纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 75-81.doi: 10.13475/j.fzxb.20230300301

• 纺织工程 • 上一篇    下一篇

三角形编织工艺数字化建模方法

王辉1,2,3, 周伟1,3, 陈一哲1,3,4, 龙晚昕1,3, 王金伙5()   

  1. 1.武汉理工大学 现代汽车零部件技术湖北省重点实验室, 湖北 武汉 430070
    2.湖北隆中实验室,湖北 襄阳 441000
    3.武汉理工大学 汽车工程学院, 湖北 武汉 430070
    4.江苏新扬新材料股份有限公司, 江苏 扬州 225000
    5.厦门理工学院福建省功能材料及应用重点实验室, 福建 厦门 361024
  • 收稿日期:2023-03-01 修回日期:2024-01-26 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 王金伙(1979—),男,讲师,博士。主要研究方向为碳纤维复合材料。E-mail:wangjinhuo@hotmail.co.uk
  • 作者简介:王辉(1984—),男,教授,博士。主要研究方向为汽车轻量化技术。
  • 基金资助:
    国家自然科学基金项目(51775398);国家自然科学基金项目(52175360);湖北省重点研发计划项目(2022BAA073);青年人才托举工程项目(2021QNRC001);湖北省科技人才服务企业项目(2023DJC055);111计划(B17034);广西科技重大专项(桂科AA23062063);襄阳高新区科技计划项目(202203号);武汉理工大学襄阳技术转移中心产业化项目(WXCJ-20220028);福建省功能材料及应用重点实验室开放基金项目(fma2023002)

Digital modeling method for triangular braiding process

WANG Hui1,2,3, ZHOU Wei1,3, CHEN Yizhe1,3,4, LONG Wanxin1,3, WANG Jinhuo5()   

  1. 1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan, Hubei 430070, China
    2. Hubei Longzhong Laboratory, Xiangyang, Hubei 441000, China
    3. College of Automotive Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
    4. Jiangsu Xinyang New Material Co., Ltd., Yangzhou, Jiangsu 225000, China
    5. Fujian Key Laboratory of Functional Materials and Applications, Ximen University of Technology, Xiamen, Fujian 361024, China
  • Received:2023-03-01 Revised:2024-01-26 Published:2024-06-15 Online:2024-06-15

摘要:

三维旋转式编织工艺按角轮缺口数分为三角形、四角形和六角形编织工艺,其中三角形编织工艺研究较少。为探索基于三角形编织工艺的预制体结构,基于Python语言和CATIA开发编织工艺软件,获得预制体几何结构。角轮和交换轮交替旋转,驱动携纱器在底盘中运动,使纱线相互交织形成预制体。对角轮、交换轮、携纱器的编号和运动状态进行数字化编码,研究不同旋转状态下携纱器的交换规律。携纱器轨迹与编织节点高度共同确定了织物空间拓扑结构,采用三次B-spline曲线对纱线空间轨迹进行拟合,建立预制体的参数化几何模型。结果表明:采用三角形编织工艺获得的预制体结构紧凑,织物几何模型与试验样件一致性较好,验证了建模方法的精度。

关键词: 三维编织, 预制体, 编织算法, 细观结构模型, 工艺软件

Abstract:

Objective The carrier track for the traditional track-and-column three-dimensional (3-D) braiding is fixed, resulting in low flexibility. In quadrangular and hexagonal 3-D braiding machines, the area ratio of the yarn carrier to the braiding plate is relatively small, resulting in low utilization of the braiding plate area. The triangle braiding process has the highest chassis utilization rate and excellent mechanical properties, and makes it significant research topic. To further study the braiding technology and algorithm of the triangular 3-D braiding, it is necessary to digitally model the braiding components and movements and to establish geometrical models of meso-structure of fabrics, which can provide a guidance for the development of new braiding techniques.

Method In the triangular braiding process, the horn-gears and the switch-gears drove the carriers while they were alternately rotating, resulting in the yarns interlacement. Horn-gears, switches, and carriers were simulated to study the movement rules of carriers. The path of carriers and the height of the braiding node jointly determined the spatial topological structure of the fabric. The cubic B-spline curve was used to optimize the spatial paths of the yarns, and the Python script was written to drive CATIA to establish the meso-structure of preforms. Furthermore, the visual interface of the fabric structure was developed with PyQt5.

Results The machine bed of the triangular braiding device mainly consists of three-wing gears and yarn carriers. These gears were independently driven by stepper motors, thus providing high flexibility. The gears were divided into two groups: horn-gears and switch-gears, with rotation angles being multiples of 120° and not exceeding 360°. The movements of the horn-gears, switch-gears, and yarn carriers were progrmmed, relating the movement of ths yarn carriers to that of horn-gears. The movement of the yarn carrier was classified into two scenarios: tracking the motion of the horn-gear and tracking the motion of the switch-gear, and corresponding formulas for position exchange were derived for each case. The projected curve of the spatial trajectory of the yarn conforms to the proportion relationship with the yarn carrier's motion path. By adjusting the scaling factor, the yarn arrangement kept compact and without penetration. Combined with the lifting height, the 3-D coordinates of the yarn trajectory points were obtained. The obtained yarn trajectory was interpolated and fitted using cubic B-spline curves, driving CATIA to establish a detailed meso-structure. A fabric structure simulation software was developed with the PyQt5 library to interactively set braiding process parameters and the initial layout of horn-gears, output spatial trajectories of all yarns, and generate fabric geometric structures. When the rotation directions of horn-gears and switch-gears were the same and their angles were both 120°, the yarns would not able to intertwine, thus unable to form a prefabricated structure. When the rotation directions of horn-gears and switch-gears were opposite, and their angles were both 120°, the yarn projection trajectories would form triangles, with the three sets of trajectories interweaving, resulting in a uniform and compact prefabricated structure. The braiding experiments were conducted on the rectangular cross-section fabrics, demonstrating good consistency between the theoretical model and experimental specimens. This validates the accuracy of the process modeling method proposed in this paper.

Conclusion The triangular 3-D braiding process could make yarns interlace with each other to form a braiding compact fabrics. The proposed modeling algorithm could simulate the meso-structure of fabrics with different braiding angles, and the fabric model was consistent with the experimental fabric. The developed fabric simulation software could visually display fabric models under different parameter combinations. In the future, the multiple structures of braiding fabrics could be obtained based on the triangular 3-D braiding process, thereby providing guidance for studying their mechanical properties.

Key words: 3-D braiding, braiding preform, braiding algorithm, meso-structure model, process software

中图分类号: 

  • TB332

图1

编织机结构"

图2

角轮与交换轮转动状态"

图3

基本单元的几何关系"

图4

底盘坐标化"

表1

角轮及交换轮转动状态编码"

旋转状态 顺时针 静止 逆时针
-240° 120° 0 120° 240°
R h , R s -2 -1 1 2

图5

纱线轨迹点计算流程图"

图6

纱线轨迹优化"

图7

织物结构模拟可视化界面"

表2

角轮和交换轮的旋转组合方案"

类别 旋转角度/(°)
角轮 -120 -120 120 120
交换轮 -120 120 120 -120

图8

携纱器的运动轨迹"

图9

4种工艺方案的织物模型"

图10

实验与仿真结构对比"

[1] 何红闯, 杨连贺, 陈利. 矩形组合截面四步法二次三维编织及其空间模型可视化[J]. 复合材料学报, 2010, 27(4): 160-167.
HE Hongchuang, YANG Lianhe, CHEN Li. 3D braiding technique complex rectangular cross-section using twice four-step and visualization of 3D braiding model[J]. Acta Materiae Compositae Sinica, 2010, 27(4): 160-167.
[2] 杨鑫, 邵慧奇, 蒋金华, 等. 六角形编织物的微观结构模拟[J]. 纺织学报, 2021, 42(4): 85-92.
YANG Xin, SHAO Huiqi, JIANG Jinhua, et al. Microstructure simulation of hexagonal braided fabric[J]. Journal of Textile Research, 2021, 42(4): 85-92.
[3] 李政宁. 六角形编织立体织物成型原理及其复合材料性能研究[D]. 上海: 东华大学, 2019: 9-13.
LI Zhengning. Study on forming principles 3D hexagonal braided fabric and its composite properties[D]. Shanghai: Donghua University, 2019.
[4] 肖来元, 寇晓菲, 左惟伟. 三维编织复合材料编织工艺过程仿真研究[J]. 计算机工程与科学, 2014, 36(4): 719-724.
XIAO Laiyuan, KOU Xiaofei, ZUO Weiwei. Study on simulation of 3D braided composite braiding pro-cess[J]. Computer Engineering and Science, 2014, 36(4): 719-724.
[5] 章宇界, 阎建华. 基于MatLab的三维四步编织仿真[J]. 东华大学学报(自然科学版), 2016, 42(3): 363-369.
ZHANG Yujie, YAN Jianhua. 3D four-step braiding simulation based on MatLab[J]. Journal of Donghua University (Natural Science), 2016, 42(3): 363-369.
[6] 马明, 张晨辰, 张一帆. 三维四向编织复合材料结构的计算机仿真[J]. 天津工业大学学报, 2019, 38(6): 45-51.
MA Ming, ZHANG Chenchen, ZHANG Yifan. Computer simulation of 3D four-direction braided composite structure[J]. Journal of Tiangong University, 2019, 38(6): 45-51.
[7] 卢光宇. 旋转式三维编织机及其编织工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 22-33.
LU Guangyu. Study on rotary 3D braiding machine and braiding process[D]. Haerbin:Harbin Institute of Technology, 2019: 22-33.
[8] 肖田华, 孙志宏, 顾生辉, 等. 旋转式三维编织预制件的计算机模拟[J]. 东华大学学报(自然科学版), 2021, 47(1): 34-40.
XIAO Tianhua, SUN Zhihong, GU Shenghui, et al. Computer simulation of rotary 3D braided preform[J]. Journal of Donghua University (Natural Science), 2021, 47(1): 34-40.
[9] 杨鑫, 邵慧奇, 蒋金华, 等. Tsuzuki旋转式立体编织机编织件的结构模拟与设计[J]. 东华大学学报(自然科学版), 2021, 47(6): 51-57.
YANG Xin, SHAO Huiqi, JIANG Jinhua, et al. Structure simulation and design of the braid of Tsuzuki rotary stereo braiding[J]. Journal of Donghua Univer-sity(Natural Science), 2021, 47(6): 51-57.
[10] MEI Haiyang, HAN Zhenyu, LIANG Shuangqiang, et al. Process modelling of 3D hexagonal braids[J]. Composite Structures, 2020, 6: 1-19.
[11] 张娴. 基于曲率分析的三次B-spline曲线保形采样方法研究[D]. 咸阳: 西北农林科技大学, 2012: 8-11.
ZHANG Xian. Study on conformal sampling method of cubic B-spline curve based on curvature analysis[D]. Xianyang: Northwest Agricultural and Forestry University, 2012:8-11.
[1] 李皎, 辛世纪, 陈利, 陈小明. 双工位针刺机器人系统设计[J]. 纺织学报, 2024, 45(07): 204-212.
[2] 丁彩红, 顾馨, 卢晨雨. 血管支架预制件的六角形三维虚拟编织[J]. 纺织学报, 2024, 45(03): 65-73.
[3] 梅宝龙, 董九志, 任洪庆, 蒋秀明. 基于多维度建模的碳/碳软硬混编预制体孔隙分析与单胞模型[J]. 纺织学报, 2023, 44(09): 108-115.
[4] 李皎, 陈利, 姚天磊, 陈小明. 类回转预制体针刺机器人系统设计[J]. 纺织学报, 2023, 44(07): 207-213.
[5] 陈小明, 任志鹏, 郑宏伟, 吴凯杰, 苏星兆, 陈利. 基于预/主刺协同的针刺织物力学性能提升方法[J]. 纺织学报, 2023, 44(04): 100-107.
[6] 陈小明, 李皎, 张一帆, 谢军波, 姚天磊, 陈利. 基于上位机的层间角联锁织物用织机开口控制系统设计[J]. 纺织学报, 2022, 43(04): 174-179.
[7] 魏小玲, 李瑞雪, 秦卓, 胡新荣, 林富生, 刘泠杉, 龚小舟. 经向T结构预制体成型关键技术[J]. 纺织学报, 2021, 42(11): 51-55.
[8] 万振凯, 贾敏瑞, 包玮琛. 三维编织复合材料中碳纳米管纱线嵌入位置和数量的优化配置[J]. 纺织学报, 2021, 42(09): 76-82.
[9] 任丽冰, 陈利, 焦伟. 基于一元二次函数的层联机织预制体细观结构表征[J]. 纺织学报, 2021, 42(08): 76-83.
[10] 杨鑫, 邵慧奇, 蒋金华, 陈南梁. 六角形编织物的微观结构模拟[J]. 纺织学报, 2021, 42(04): 85-92.
[11] 陈小明, 李皎, 张一帆, 谢军波, 李晨阳, 陈利. 回转结构预制体柔性针刺成型系统设计[J]. 纺织学报, 2020, 41(11): 156-161.
[12] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[13] 梁双强, 陈革, 周其洪. 开孔三维编织复合材料的压缩性能[J]. 纺织学报, 2020, 41(05): 79-84.
[14] 刘军, 刘奎, 宁博, 孙宝忠, 张威. 三维编织复合材料T型梁的低温场弯曲性能[J]. 纺织学报, 2019, 40(12): 57-62.
[15] 董九志, 宋宗建, 陈云军, 蒋秀明. 预制体缝合针稳定性分析及插刺机构改进设计[J]. 纺织学报, 2019, 40(10): 171-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!