纺织学报 ›› 2024, Vol. 45 ›› Issue (07): 181-188.doi: 10.13475/j.fzxb.20230804901

• 服装工程 • 上一篇    下一篇

气凝胶复合材料在干式潜水服内胆隔热性能提升中的应用

马亮1, 俞旭华2, 刘文武2, 李慈2, 方以群2, 李俊1,3, 徐佳骏2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.海军军医大学(第二军医大学)海军特色医学中心 潜水与高气压医学研究室, 上海 200433
    3.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2023-08-22 修回日期:2024-03-26 出版日期:2024-07-15 发布日期:2024-07-15
  • 通讯作者: 徐佳骏(1981—),男,副研究员,博士。主要研究方向为潜水与高气压医学。E-mail xujiajun920@163.com
  • 作者简介:马亮(1992—),男,博士生。主要研究方向为功能防护服装与服装智能及数字化设计。
  • 基金资助:
    国防科技创新特区项目(19-163-16-ZD-020-008-03);海军特色医学中心卓优人才工程项目(21TPZY0101)

Application of aerogel composite materials in improving thermal insulation performance of dry diving suit inner liner

MA Liang1, YU Xuhua2, LIU Wenwu2, LI Ci2, FANG Yiqun2, LI Jun1,3, XU Jiajun2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Department of Diving and Hyperbaric Medical Research, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai 200433, China
    3. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2023-08-22 Revised:2024-03-26 Published:2024-07-15 Online:2024-07-15

摘要:

为提升干式潜水服内胆的隔热性能,并探究气凝胶复合材料在潜水服内胆中的水下应用潜力。选择絮片型、发泡型及非织造布型气凝胶复合材料,采用绗缝工艺技术模拟材料在水下的受压状态,研究其在压缩状态下的隔热性能,然后,制作潜水服内胆,通过暖体假人实验及真人水下实验测试其隔热性能。结果表明,絮片型气凝胶复合材料的水下适用性优于絮片型新雪丽棉;发泡型及非织造布型气凝胶复合材料的热阻受压强影响小,也较适用于水下环境;在真人实验过程中,潜水员的核心温度始终大于37 ℃,证明所研制的气凝胶复合材料内胆具有良好的水下隔热效果。研究结果可为受压环境下防护服隔热材料的应用方法提供指导建议。

关键词: 干式潜水服, 气凝胶复合材料, 隔热内胆, 隔热性能, 水下保暖, 防寒

Abstract:

Objective This research aims to investigate the potential application of aerogel composite materials for enhancing the thermal insulation performance of dry diving suit liners underwater. Through meticulous experimentation conducted at both fabric and garment levels, this research aims to assess the thermal insulation capabilities, tailored for garment application. Employing sophisticated seam-sealing techniques, the behavior of these materials under compression in underwater conditions are to be simulated to evaluate alterations in thermal insulation performance. This comprehensive methodology seeks to elucidate the optimal utilization of aerogel composite materials, providing valuable insights into enhancing thermal insulation in diving suits, particularly in the challenging low-temperature, high-pressure environments often encountered during underwater operations.

Method Experimental samples consisted of various aerogel composite materials known for their lightweight and superior thermal insulation properties. These are in the forms of foam, nonwoven fabric, and flake-type aerogel composites, along with a conventional polyester fiber cotton, specifically the C-type Thinsulate from 3M Corporation, used in dry diving suit liners. Fabrication involved combining these materials into a three-layered fabric system, maintaining consistency in outer and inner layer materials. Testing methodologies included sweating hot plate experiments for thermal resistance assessment and simulated compression design to simulate underwater pressure conditions. Additionally, sweating manikin method and underwater human subject trials were conducted to evaluate insulation performance in practical scenarios.

Results Thermal performance analysis provided valuable insights into the behavior of various fabric systems. Significant thickness variations were observed among the samples before seaming, with flake-type materials displaying the highest initial thickness due to their relaxed state. After seaming, these materials experienced substantial thickness reduction, indicating their susceptibility to compression. Conversely, non-woven and foam-type materials exhibited minimal thickness variation, suggesting their resilience to compression by virtue of inherent elasticity and structural composition. Regarding thermal resistance, considerable diversity was noted among fabric samples pre-seaming, with flake-type materials demonstrating higher thermal resistance compared to others. However, post-seaming, the thermal resistance disparity diminished significantly. This reduction was particularly pronounced in flake-type fabrics, suggesting a decrease in insulation capacity due to fiber compression and air expulsion. Conversely, multilayer fabric systems comprising aerogel composites exhibited enhanced thermal resistance post-seaming, indicating their potential for improved insulation performance in underwater conditions. Furthermore, the evaluation of thermal clothing insulation performance yielded promising outcomes. Combining aerogel composite materials in drysuit thermal liners resulted in higher total thermal resistance compared to conventional polyester fiber cotton liners. Additionally, the multilayer fabric system composed of aerogel composites demonstrated superior thermal resistance under compression, suggesting enhanced insulation efficacy in underwater environments. During underwater dressing experiments, divers maintained stable core body temperatures above 37 ℃, despite the water temperature being 14 ℃ while experiencing decreasing skin temperatures over time. Notably, thigh skin temperature exhibited the fastest decrease, attributed to lower metabolic heat production and increased heat dissipation. Overall, the aerogel composite material thermal liner demonstrated excellent insulation performance, highlighting its potential for use in underwater garments. The findings emphasized the promising prospects of aerogel composite materials in enhancing insulation performance in underwater environments. These materials offer thinner and more effective thermal clothing solutions compared to conventional materials, paving the way for advancements in underwater garment design and performance.

Conclusion The study reveals the favorable suitability of selected aerogel composite materials underwater, with flake-type aerogel composites demonstrating optimal performance. Despite lower initial thermal resistance compared to C-type Thinsulate polyester fiber cotton in natural conditions, aerogel composites exhibit similar thermal resistance under compression, indicating their suitability for underwater high-pressure environments. Foam-type and non-woven aerogel composites show minimal thermal resistance differences before and after seaming, with foam-type materials exhibiting deformation-related variations. The assembled aerogel composite thermal liner demonstrates excellent insulation performance, maintaining core body temperatures above 37 ℃ during underwater experiments, thereby ensuring diver safety during subaquatic operations, despite the challenging water temperature of 14 ℃ encountered during these underwater experiments. The study provides valuable data for selecting and applying insulation materials in underwater high-pressure environments, offering new solutions for diver protection and influencing the development of underwater protective clothing.

Key words: dry diving suit, aerogel composite material, thermal insulation liner, thermal insulation performance, underwater insulation, cold protection

中图分类号: 

  • TS941.16

表1

各层织物规格参数表"

编号 材料
名称
所处
层位
面密度/
(g·m-2)
原始
厚度/
mm
透气率/
(mm·s-1)
1 非织造布型
气凝胶复合
材料
填充
29.908±
0.719
0.2±
0.1
57.860±
7.750
2 发泡型气凝
胶复合
材料
填充
117.278±
0.051
2.3±
0.1
1213.184±
0.124
3 絮片型气凝
胶复合
材料
填充
143.320±
0.087
12.3±
1.3
97.300±
4.940
4 新雪丽棉 填充
149.497±
0.128
24.8±
1.5
1390.620±
120.070
5 涤纶织物 外层 149.760±
0.641
0.221±
0.2
32.850±
2.241
6 抓绒织物 内层 1.025±
0.034
1.276±
0.2
811.080±
24.030

图1

保暖内胆三维款式示意"

图2

绗缝规格"

图3

暖体假人实际测试环境"

图4

高压低温水舱深度/温度变化"

图5

绗缝前后织物系统尺寸对比"

图6

绗缝前后织物热阻对比"

图7

1号潜水员测试结果"

图8

2号潜水员测试结果"

[1] XUE L H, DING L, ZHANG J, et al. Thermal response of human body with immersion suit in cold environ-ment[J]. International Journal of Biometeorology, 2023, 67(3): 447-456.
[2] SULLIVAN-KWANTES W, TIKUISIS P. Extremity cooling during an arctic diving training exercise[J]. International Journal of Circumpolar Health, 2023. DOI: 10.1080/22423982.2023.2190488.
[3] 朱嘉, 方以群, 丁江舟, 等. 低水温潜水时机体中心温度的变化[J]. 海军医学杂志, 2008, 29(1):9-11.
ZHU Jia, FANG Yiqun, DING Jiangzhou, et al. Changes in body center temperature during low water temperature diving[J]. Journal of Naval Medicine, 2008, 29(1):9-11.
[4] KELLY K R, PALOMBO L J, JENSEN A E, et al. Efficacy of closed cell wet-suit at various depths and gas mixtures for thermoprotection during military training dives[J]. Frontiers in Physiology, 2023. DOI: 10.3389/fphys.2023.1165196.
[5] WALDRON A T. Improving the flexibility and thermal protection of a diving wetsuit[D]. Monterey, CA: Naval Postgraduate School, 2022:39-42.
[6] ROGALE D, FIRST R S, KNEZIC Z, et al. Measurement methods of the thermal resistance of materials used in clothing[J]. Materials, 2023. DOI: 10.3390/ma16103842.
[7] WANG Y, XU Y, XU D, et al. Optimization of multilayer clothing assemblies for thermal comfort in cold climate[J]. International Journal of Thermal Sciences, 2022. DOI:10.1016/j.ijthermalsci.2022.107586.
[8] 马亮, 李俊. 多种智能技术在防寒服装功能研发中的应用进展[J]. 纺织学报, 2022, 43(6): 206-214.
MA Liang, LI Jun. Application progress in cold protective clothing based on multiple intelligent technologies[J]. Journal of Textile Research, 2022, 43 (6):206-214.
[9] ZEMZEM M, HALLE S, VINCHES L. Thermal insulation of protective clothing materials in extreme cold conditions[J]. Safety and Health at Work, 2023, 14(1): 107-117.
doi: 10.1016/j.shaw.2022.11.004 pmid: 36941933
[10] DU Y, KIM H-E. Research trends of the application of aerogel materials in clothing[J]. Fashion and Textiles, 2022, 9(1): 23.
[11] GRESZTA A, BARTKOWIAK G, DABROWSKA A, et al. Multilayer nonwoven inserts with aerogel/pcms for the improvement of thermophysiological comfort in protective clothing against the cold[J]. Materials, 2022. DOI:10.3390/ma15062307.
[12] RAI N, CHAUHAN I. Multifunctional aerogels: a comprehensive review on types, synthesis and applications of aerogels[J]. Journal of Sol-Gel Science and Technology, 2023, 105(2): 324-336.
[13] XUE T, ZHU C, FENG X, et al. Polyimide aerogel fibers with controllable porous microstructure for super-thermal insulation under extreme environments[J]. Advanced Fiber Materials, 2022, 4(5): 1118-1128.
[14] SUBHAM, RATHOUR R, DAS A, et al. Development of thermal liner for extreme heat protective clothing using aerogel technology[J]. Journal of The Textile Institute, 2023, 4(10): 1-10.
[15] 吴黛唯, 黄家成, 王云仪. 服装形变对羽绒服隔热能力的影响[J]. 纺织学报, 2022, 43(9): 167-174.
WU Daiwei, HUANG Jiacheng, WANG Yunyi. Effect of clothing deformation on thermal insulation capacity of down jackets[J]. Journal of Textile Research, 2022, 43 (9):167-174.
[1] 李久刚, 石玉菲, 刘可帅, 李文斌, 柯贵珍. 石英纱线/石英纤维毡三维织物的设计及其隔热性能[J]. 纺织学报, 2024, 45(06): 53-58.
[2] 杜吉辉, 苏云, 刘广菊, 田苗, 李俊. 智能防寒手套温控系统设计及热舒适性研究[J]. 纺织学报, 2023, 44(04): 172-178.
[3] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
[4] 马亮, 李俊. 多种智能技术在防寒服装功能研发中的应用进展[J]. 纺织学报, 2022, 43(06): 206-214.
[5] 宫学斌, 刘元军, 赵晓明. 热防护用气凝胶材料的研究进展[J]. 纺织学报, 2022, 43(06): 187-196.
[6] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[7] 郑晴, 王昭杰, 王鸿博, 王敏, 柯莹. 电动自行车骑行防寒服的研制与性能评价[J]. 纺织学报, 2021, 42(07): 158-163.
[8] 吴黛唯, 李红彦, 戴艳阳, 苏云, 王云仪. 加热装置在防寒服中的位置及其热效用[J]. 纺织学报, 2020, 41(06): 118-124.
[9] 苏文桢, 卢业虎, 王方明, 宋文芳. 新型充气夹克的研制与保暖性能评价[J]. 纺织学报, 2020, 41(05): 140-145.
[10] 苏文桢, 宋文芳, 卢业虎, 杨秀月. 充气防寒服的保暖性能[J]. 纺织学报, 2020, 41(02): 115-118.
[11] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用[J]. 纺织学报, 2020, 41(01): 139-144.
[12] 陈萌 朱方龙 . 热辐射下织物内水分干燥实验及其动力学研究[J]. 纺织学报, 2018, 39(08): 52-57.
[13] 王帅 卢业虎 王丽君 尤禅懿. 低辐射环境下形状记忆合金对防火面料隔热性能的影响[J]. 纺织学报, 2017, 38(08): 114-119.
[14] 张睿 刘静静 肖红. 羊毛絮片防寒服缝纫工艺的参数优化设计[J]. 纺织学报, 2014, 35(6): 115-0.
[15] 王云仪 张爱萍 皇甫孝东. 着装方式对服装隔热性能的影响[J]. 纺织学报, 2014, 35(6): 94-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!