纺织学报 ›› 2024, Vol. 45 ›› Issue (07): 213-222.doi: 10.13475/j.fzxb.20230203702

• 综合评述 • 上一篇    下一篇

废弃羊毛角蛋白再生工艺及其高值化应用的研究进展

董亚琳, 王黎明(), 覃小红   

  1. 东华大学 纺织学院, 上海 201620
  • 收稿日期:2023-02-16 修回日期:2023-09-08 出版日期:2024-07-15 发布日期:2024-07-15
  • 通讯作者: 王黎明(1988—),男,研究员,博士。主要研究方向为纳米纤维集合体的可控成形及功能化应用。E-mail:wangliming@dhu.edu.cn
  • 作者简介:董亚琳(1999—),女,博士生。主要研究方向为废弃羊毛角蛋白的回收。
  • 基金资助:
    国家自然科学基金项目(52003044)

Research progress in regeneration process and high-value applications of waste wool keratin

DONG Yalin, WANG Liming(), QIN Xiaohong   

  1. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2023-02-16 Revised:2023-09-08 Published:2024-07-15 Online:2024-07-15

摘要:

废弃羊毛纺织品的低值化处理方式造成严重的资源浪费和二次环境污染,其主体成分角蛋白的提取与高值化应用是实现废弃羊毛变废为宝的方案。首先基于羊毛、角蛋白的层级结构展开介绍,重点描述羊毛角蛋白的力学性能、多重响应形状记忆性能、压电性能和生物学性能4个方面的特性。其次对角蛋白的提取进行系统性概述,分别讨论了物理、化学、生物法3种提取工艺的优势和缺陷,并介绍其在纤维、凝胶、膜和支架4种应用形式中的制备工艺。总结角蛋白因其优异的生物相容性、生物降解性、压电性能、力学稳定性、形状记忆等特性,在柔性电子器件、生物医用、吸附材料高值化领域中的应用。最后针对目前角蛋白回收工艺的最新研究进展进行总结,并对其进一步产业化应用做出展望。

关键词: 羊毛, 角蛋白, 再生, 层级结构, 高值化应用

Abstract:

Significance Excesive consumption of petroleum-based synthetic fibers limits the sustainability of textile industry. It is urgent to find low-cost renewable biomass resources to replace convenitional petroleum resources. Due to the quick expansion of fast fashion, the amount of waste wool grows every year. In addition, waste wool is normally disposed through incineration or landfill, which is not conducive to economic development and causes severe secondary pollution to the environment. Keratin is the major component of wool, which has excellent mechanical stability, shape memory properties, piezoelectric properties, biological activity, biodegradability, biocompatibility, and adsorption properties. Thus, keratinous material extracted from waste wool can be applied to produce high-value applications such as functional finishing agents, thermal and sound insulation materials, flexible electronic devices, biomedical applications, or adsorption materials. The regeneration technology of keratin effectively contributes to the sustainable development of wool resources, which triggered dramatically interest in recent years.

Progress This review mainly reports the regeneration techniques of keratin, which includes the methods of extraction and recent high-value applications in the form of fibers, membranes, gels, and scaffolds. The common methods of keratin extraction primarily include physical, chemical, and biological methods. Owing to precisely destroying disulfide bonds and hydrogen bonds, chemical methods, such as reduction, oxidation, ionic liquid, and deep eutectic solvent methods, are widely applied. The reduction methods effectively preserve the secondary structure of keratin, and the free sulfhydryl groups generated after extraction can be reconstructed in the subsequent process to cross-link keratin chains, thus perfectly restoring the hierarchical structure in fibers. However, keratinous materials are normally brittle due to poor mechanical properties. In previous work, researchers had demonstrated that 1,4-dithiothreitol can effectively modulate the viscoelastic spinning dope and act as a bridge in the keratin chains. After the drafting in wet spinning, fibers were induced to rearrange to the secondary structure. The regenerated keratin materials with excellent mechanical properties have extensive application prospects, which mainly include flexible electronic devices (such as humidity sensors, conductive composites, gel electrolytes, and so on), biomedical productions (such as wound healing, hemostasis, drug release carriers, tissue engineering, and so on) as well as adsorption applications.

Conclusion and Prospect The regenerated techniques of waste wool keratin and its high-value applications receive a lot of attention, promoting the transformation of biomass resources into the valuable materials. However, there are still some challenges that prevent its further practical and commercial production, such as poor mechanical properties, toxicity of chemical reagents, higher cost, and non-environmentally friendly disposal techniques. In-depth investigations on keratin extraction techniques not only can ensure high extraction rate, but also guarantee integral secondary structure of keratin chains. For the extraction techniques, ionic liquids, and green reducing agents such as cysteine, glutathione, and lower toxic 1,4-dithiothreitol gain widespread attention. In addition, chemical methods to enhance the extraction rate of keratin can be assisted by ultrasonic or microwave treatment. A dearth of information regarding the improvement of mechanical property has far limited the process of industrialization. It is also suggested that further investigations are required to gain high molecular weight keratin, find eco-friendly cross-linking agents, increase the orientation and crystallinity of the prepared fibers. In order to reduce purification cost in the biomedical applications, researches should use green and environmentally friendly reagents in the extraction process. The rapid development of keratin regeneration techniques can greatly promote the recycling of biomass resources, and sustainable economic development.

Key words: wool, keratin, regeneration, hierarchical structure, high-value application

中图分类号: 

  • TS102.6

图1

羊毛的层级结构"

图2

角蛋白分子内和分子间作用力"

表1

不同工艺制备的再生角蛋白纤维的性能对比"

样品 制备工艺 断裂强度/
MPa
断裂
伸长率/%
文献
天然羊毛 173±23 36±5 [45]
再生角蛋白纤维 添加表面活性剂
提高纺丝性能
101±15 10.9±2.9 [46]
再生角蛋白纤维 氧化重建交联 137 100 [7]
再生角蛋白纤维 引入DTT扩链剂 186.1 8 [47]
角蛋白/
PEG-g-GO
复合纤维
聚乙二醇功能化的
氧化石墨(PEG-g-GO)
重建角蛋白
157±40 3.9 [48]

图3

羊毛角蛋白基柔性应变传感器"

图4

羊毛角蛋白生物医用领域应用"

[1] CUI G, DONG Y, LI B, et al. A novel heterogeneous Fenton photocatalyst prepared using waste wool fiber combined with Fe3+ ions for dye degradation[J]. Fibers and Polymers, 2017, 18: 713-719.
[2] KYERE V N, GREVE K, ATIEMO S M, et al. Contamination and health risk assessment of exposure to heavy metals in soils from informal e-waste recycling site in Ghana[J]. Emerging Science Journal, 2018, 2(6): 428-436.
[3] SUN Y, LI B, ZHANG Y, et al. The progress and prospect for sustainable development of waste wool resources[J]. Textile Research Journal, 2022, 93(1-2): 468-485.
[4] SHAVANDI A, SILVA T H, BEKHIT A A, et al. Keratin: dissolution, extraction and biomedical application[J]. Biomater Sci, 2017, 5(9): 1699-1735.
[5] SU C, GONG J S, QIN J, et al. Glutathione enables full utilization of wool wastes for keratin production and wastewater decolorization[J]. Journal of Cleaner Production, 2020. DOI: 10.1016/j.jclepro.2020.122092.
[6] NEPAL D, KANG S, ADSTEDT K M, et al. Hierarchically structured bioinspired nano-composites[J]. Nat Mater, 2023, 22(1): 18-35.
[7] CERA L, GONZALEZ G M, LIU Q, et al. A bioinspired and hierarchically structured shape-memory material[J]. Nat Mater, 2021, 20(2): 242-9.
[8] QUARTINELLO F, VECCHIATO S, WEINBERGER S, et al. Highly selective enzymatic recovery of building blocks from wool-cotton-polyester textile waste blends[J]. Polymers, 2018. DOI: 10.3390/polym10101107.
[9] 金雨婷, 胡馨予, 石国庆, 等. 羊毛蛋白组学研究进展[J]. 中国细胞生物学学报, 2020, 42(7): 1276-1287.
JIN Yuting, HU Xinyu, SHI Guoqing, et al. Advance in the research of wool proteomics[J]. Chinese Journal of Cell Biology, 2020, 42(7): 1276-1287.
[10] CLARK M. Handbook of textile and industrial dyeing: principles, processes and types of dyes[M]. Cambridge: Woodhead Pubiling Liminted. Elsevier, 2011:51-53.
[11] MCKITTRICK J, CHEN P Y, BODDE S, et al. The structure, functions, and mechanical properties of keratin[J]. JOM, 2012, 64(4): 449-468.
[12] LAZARUS B S, CHADHA C, VELASCO-HOGAN A, et al. Engineering with keratin: a functional material and a source of bioinspiration[J]. iScience, 2021. DOI: 10.1016/j.isci.2021.102798.
[13] 王志诚, 王昊, 肖璇, 等. 角蛋白提取工艺及在环保材料领域应用研究现状分析[J]. 山东化工, 2022, 51(16): 82-3,8.
WANG Zhicheng, WANG Hao, XIAO Xuan, et al. Analysis of keratin extraction technology and its application in the field of environmental protection materials[J]. Shandong Chemical Industry, 2022, 51(16): 82-3,8.
[14] FEUGHELMAN M. A two-phase structure for keratin fibers[J]. Textile Research Journal, 1959, 29(3): 223-228.
[15] CHILAKAMARRY C R, MAHMOOD S, SAFFE S, et al. Extraction and application of keratin from natural resources: a review[J]. 3 Biotech, 2021, 11(5): 1-12.
[16] KREPLAK L, DOUCET J, DUMAS P, et al. New aspects of the α-helix to β-sheet transition in stretched hard α-keratin fibers[J]. Biophysical Journal, 2004, 87(1): 640-647.
[17] WANG B, YANG W, MCKITTRICK J, et al. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration[J]. Progress in Materials Science, 2016, 76: 229-318.
[18] FRASER R D B, MACRAE T P. The mechanical properties of biological materials[M]. London: Society for Experimental Biology, 1980: 211-246.
[19] 朱锦, 马宁, 邵元龙. 再生羊毛角蛋白纤维的制备及力学增强设计[J]. 功能材料与器件学报, 2021, 27(5): 371-382.
ZHU Jin, MA Ning, SHAO Yuanlong. Preparation and reinforcing design of regenerated wool keratin fiber[J]. Journal of Functional Materials and Devices, 2021, 27(5): 371-382.
[20] XIAO X, HU J, GUI X, et al. Is biopolymer hair a multi-responsive smart material[J]. Polymer Chemistry, 2017, 8(1): 283-294.
[21] MENEFEE E. Charge separation associated with dipole disordering in proteins[J]. Annals of the New York Academy of Sciences, 1974, 238(1): 53-67.
[22] 李子晗, 赵超, 王闻宇, 等. 蛋白质压电材料的研究进展[J]. 材料导报, 2022, 36(11): 205-212.
LI Zihan, ZHAO Chao, WANG Wenyu, et al. Research progress of protein piezoelectric materials[J]. Materials Reports, 2022, 36(11): 205-212.
[23] MORI H, HARA M. Transparent biocompatible wool keratin film prepared by mechanical compression of porous keratin hydrogel[J]. Materials Science and Engineering: C, 2018, 91: 19-25.
[24] ZHANG H, WANG K, GAO T, et al. Controlled release of bFGF loaded into electrospun core-shell fibrous membranes for use in guided tissue regen-eration[J]. Biomedical Materials, 2020. DOI: 10.1088/1748-605X/ab7979.
[25] YIFANG S, HUANG L, WANG X, et al. Intelligent drug delivery system based on silk fibroin/wool keratin[J]. Mathematical Problems in Engineering, 2022. DOI: 10.1155/2022/6748645.
[26] HUMPHRIES J D, BYRON A, HUMPHRIES M J. Integrin ligands at a glance[J]. Journal of Cell Science, 2006, 119(19): 3901-3903.
[27] RAJABI M, ALI A, MCCONNELL M, et al. Keratinous materials: structures and functions in biomedical applications[J]. Mater Sci Eng C Mater Biol Appl, 2020. DOI: 10.1016/j.msec.2019.110612.
[28] XU H, YANG Y. Controlled de-cross-linking and disentanglement of feather keratin for fiber preparation via a novel process[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(6): 1404-1410.
[29] OKORO O V, JAFARI H, HOBBI P, et al. Enhanced keratin extraction from wool waste using a deep eutectic solvent[J]. Chemical Papers, 2022, 76(5): 2637-2648.
[30] XIE H, LI S, ZHANG S. Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers[J]. Green Chemistry, 2005, 7(8): 606-608.
[31] ZHAO W, YANG R, ZHANG Y, et al. Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: high density steam flash-explosion[J]. Green Chemistry, 2012, 14(12): 3352-3360.
[32] ZHANG Y, ZHAO W, YANG R. Steam flash explosion assisted dissolution of keratin from feathers[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2036-2042.
[33] LI X, GUO Z, LI J, et al. Swelling and microwave-assisted hydrolysis of animal keratin in ionic liquids[J]. Journal of Molecular Liquids, 2021. DOI: 10.1016/j.molliq.2021.117306.
[34] DU W, ZHANG L, ZHANG C, et al. Green and highly efficient wool keratin extraction by microwave induction method[J]. Frontiers in Materials, 2022. DOI: 10.3389/fmats.2021.789081.
[35] XU H, MA Z, YANG Y. Dissolution and regeneration of wool via controlled disintegration and disentanglement of highly crosslinked keratin[J]. Journal of Materials Science, 2014, 49(21): 7513-7521.
[36] KATOH K, TANABE T, YAMAUCHI K. Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity[J]. Biomaterials, 2004, 25(18): 4255-4262.
pmid: 15046915
[37] MI X, LI W, XU H, et al. Transferring feather wastes to ductile keratin filaments towards a sustainable poultry industry[J]. Waste Management, 2020, 115: 65-73.
doi: S0956-053X(20)30388-3 pmid: 32731135
[38] MATTIELLO S, GUZZINI A, DEL GIUDICE A, et al. Physico-chemical characterization of keratin from wool and chicken feathers extracted using refined chemical methods[J]. Polymers, 2022. DOI: 10.3390/polym15010181.
[39] THOMPSON E, O'DONNELL I. Studies on reduced wool I: the extent of reduotion of wool with inoreasing conoentrations of thiol, and the extraotion of proteins from reduoed and alkylated wool[J]. Australian Journal of Biological Sciences, 1962, 15(4): 757-768.
[40] FEROZ S, MUHAMMAD N, DIAS G, et al. Extraction of keratin from sheep wool fibres using aqueous ionic liquids assisted probe sonication technology[J]. Journal of Molecular Liquids, 2022. DOI: 10.1016/j.molliq.2022.118595.
[41] DEB-CHOUDHURY S, PLOWMAN J E, HARLAND D P. Isolation and analysis of keratins and keratin-associated proteins from hair and wool[J]. Methods Enzymol, 2016, 568: 279-301.
[42] ZHANG Z, NIE Y, ZHANG Q, et al. Quantitative change in disulfide bonds and microstructure variation of regenerated wool keratin from various ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2614-2622.
[43] JI Y, CHEN J, LÜ J, et al. Extraction of keratin with ionic liquids from poultry feather[J]. Separation and Purification Technology, 2014, 132: 577-83.
[44] SU C, GONG J S, YE J P, et al. Enzymatic extraction of bio-active and self-assembling wool keratin for biomedical applications[J]. Macromolecular Bioscience, 2020. DOI: 10.1002/mabi.202000073.
[45] POOLE A J, CHURCH J S, HUSON M G. Environmentally sustainable fibers from regenerated protein[J]. Biomacromolecules, 2009, 10(1): 1-8.
doi: 10.1021/bm8010648 pmid: 19035767
[46] XU H, MA Z, YANG Y. Dissolution and regeneration of wool via controlled disintegration and disentanglement of highly crosslinked keratin[J]. Journal of Materials Science, 2014, 49: 7513-7521.
[47] ZHU J, MA N, LI S, et al. Reinforced wool keratin fibers via dithiol chain re-bonding[J]. Advanced Functional Materials, 2023. DOI: 10.1002/adfm.202213644.
[48] LI Y B, LIU H H, WANG X C, et al. Fabrication and performance of wool keratin-functionalized graphene oxide composite fibers[J]. Materials Today Sustainability, 2019. DOI: 10.1016/j.mtsust.2019.100006.
[49] CARINGELLA R, BHAVSAR P, DALLA FONTANA G, et al. Fabrication and properties of keratoses/sericin blend films[J]. Polymer Bulletin, 2022, 79(4): 2189-2204.
[50] FERNáNDEZ-D'ARLAS B. Tough and functional cross-linked bioplastics from sheep wool keratin[J]. Scientific Reports, 2019, 9(1): 1-12.
[51] CATALDI P, CONDURACHE O, SPIRITO D, et al. Keratin-graphene nanocomposite: transformation of waste wool in electronic devices[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12544-12551.
[52] LI Y B, LIU H H, WANG X C, et al. Fabrication and performance of wool keratin-functionalized graphene oxide composite fibers[J]. Materials Today Sustainability, 2019. DOI: 10.1016/j.mtsust.2019.100006.
[53] ZHANG L, HU F, ZHU S, et al. Meso-reconstruction of wool keratin 3D 'molecular springs' for tunable ultra-sensitive and highly recovery strain sensors[J]. Small, 2020. DOI: 10.1002/smll.202000128.
[54] HUANG H, DONG Z, REN X, et al. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications[J]. Nano Research, 2023(16): 3475-3515.
[55] 汤燕伟, 于伟东. 羊毛溶液和角蛋白膜的实用制备技术与基本问题[J]. 膜科学与技术, 2007(2): 80-84.
TANG Yanwei, YU Weidong. Practical preparation techniques and basic problems of wool solution and keratin membrane[J]. Menbrane Science and Technology, 2007(2): 80-84.
[56] 郑顺姬, 曹向禹, 隋智慧. 角蛋白膜的制备及应用研究进展[J]. 化工新型材料, 2021, 49(4): 251-256.
ZHENG Shunji, CAO Xiangyu, SUI Zhihui. Research progress of preparation and application of keratin film[J]. New Chemical Materials, 2021, 49(4): 251-256.
[57] LINNES M P, RATNER B D, GIACHELLI C M. A fibrinogen-based precision microporous scaffold for tissue engineering[J]. Biomaterials, 2007, 28(35): 5298-5306.
pmid: 17765302
[58] LEE C H, YUN Y J, CHO H, et al. Environment-friendly, durable, electro-conductive, and highly transparent heaters based on silver nanowire functionalized keratin nanofiber textiles[J]. Journal of Materials Chemistry C, 2018, 6(29): 7847-7854.
[59] ZHANG W, LIU X, LIN Y, et al. Palladium nanoparticles/wool keratin-assisted carbon composite-modified flexible and disposable electrochemical solid-state pH sensor[J]. Chinese Physics B, 2022. DOI: 10.1088/1674-1056/ac3ca9.
[60] PATIL A B, MENG Z, WU R, et al. Tailoring the meso-structure of gold nanoparticles in keratin-based activated carbon toward high-performance flexible sensor[J]. Nanomicro Lett, 2020. DOI: 10.1007/s40820-020-00459-5.
[61] HAMMOUCHE H, ACHOUR H, MAKHLOUF S, et al. A comparative study of capacitive humidity sensor based on keratin film, keratin/graphene oxide, and keratin/carbon fibers[J]. Sensors and Actuators A: Physical, 2021. DOI: 10.1016/j.sna.2021.112805.
[62] SHAO Y, ZHAO J, HU W, et al. Regulating interfacial ion migration via wool keratin mediated biogel electrolyte toward robust flexible Zn-ion batteries[J]. Small, 2022. DOI: 10.1002/smll.202107163.
[63] FEROZ S, MUHAMMAD N, RATNAYAKE J, et al. Keratin-based materials for biomedical applic-ations[J]. Bioactive Materials, 2020, 5(3): 496-509.
[64] BORDELEAU F, BESSARD J, SHENG Y, et al. Keratin contribution to cellular mechanical stress response at focal adhesions as assayed by laser tweezers[J]. Biochemistry and Cell Biology, 2008, 86(4): 352-359.
doi: 10.1139/o08-076 pmid: 18756330
[65] SIERPINSKI P, GARRETT J, MA J, et al. The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves[J]. Biomaterials, 2008, 29(1): 118-128.
pmid: 17919720
[66] SANCHEZ RAMIREZ D O, CRUZ-MAYA I, VINEIS C, et al. Design of asymmetric nanofibers-membranes based on polyvinyl alcohol and wool-keratin for wound healing applications[J]. J Funct Biomater, 2021. DOI: 10.3390/jfb12040076.
[67] ZHU S, ZENG W, MENG Z, et al. Using wool keratin as a basic resist material to fabricate precise protein patterns[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201900870.
[68] TISSERA N D, WIJESENA R N, YASASRI H, et al. Fibrous keratin protein bio micro structure for efficient removal of hazardous dye waste from water: surface charge mediated interfaces for multiple adsorption desorption cycles[J]. Materials Chemistry and Physics, 2020. DOI: 10.1016/j.matchemphys.2020.122790.
[69] ALUIGI A, CORBELLINI A, ROMBALDONI F, et al. Wool-derived keratin nanofiber membranes for dynamic adsorption of heavy-metal ions from aqueous solu-tions[J]. Textile Research Journal, 2013, 83(15): 1574-1586.
[1] 张素雅, 崔荣荣, 王志成, 蒋汶秦, 徐平华. 八达晕纹样结构参数化解构与再生设计[J]. 纺织学报, 2024, 45(06): 165-172.
[2] 杨美慧, 李博, 沈艳琴, 武海良. 再生角蛋白凝胶对纺织退浆废水中浆料分子的吸附性能[J]. 纺织学报, 2024, 45(02): 142-152.
[3] 向宇, 周爱晖, 王思翔, 季巧, 文馨可, 袁久刚. 基于拉曼光谱的羊毛二硫键及构象含量分析[J]. 纺织学报, 2024, 45(02): 45-51.
[4] 卜凡, 应丽丽, 李长龙, 王宗乾. 羽绒在乳酸/半胱氨酸低共熔溶剂中的溶解行为及其机制[J]. 纺织学报, 2023, 44(10): 24-30.
[5] 梁志结, 罗正智, 程海兵, 贾维妮, 毛庆辉. 多钒酸盐催化氧化咖啡酸及其对羊毛织物的原位染色性能[J]. 纺织学报, 2023, 44(10): 98-103.
[6] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[7] 谭启飞, 陈梦莹, 马晟晟, 孙明祥, 代春鹏, 罗仑亭, 陈益人. 湖羊毛非织造阻燃吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(05): 147-154.
[8] 贾维妮, 王涛, 鲍杰, 梁志结, 王海峰. 基于漆酶催化角蛋白头发纤维生物修复染色[J]. 纺织学报, 2023, 44(04): 108-114.
[9] 韩非, 郎晨宏, 邱夷平. 废旧纺织品循环经济的监督检验体系研究进展[J]. 纺织学报, 2023, 44(03): 231-238.
[10] 蒋阳, 崔彪, 山传雷, 刘殷, 张艳红, 许长海. 天然染料染色羊毛的色域拓展及颜色预测模型[J]. 纺织学报, 2023, 44(02): 199-206.
[11] 乌婧, 江振林, 吉鹏, 谢锐敏, 陈烨, 陈向玲, 王华平. 纺织品前瞻性制备技术及应用研究现状与发展趋势[J]. 纺织学报, 2023, 44(01): 1-10.
[12] 王洪杰, 姚岚, 王赫, 张仲. 医用口罩熔喷非织造布电极的制备及其电化学性能[J]. 纺织学报, 2022, 43(12): 22-28.
[13] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[14] 赵馨, 王彩霞, 周小皮, 丁雪梅. 基于岭回归方法的羊毛衫洗后特征感性评价[J]. 纺织学报, 2022, 43(07): 155-161.
[15] 陈龙, 周哲, 张军, 徐世美, 倪延朋. 废旧棉与涤纶纺织品化学法循环再生利用的研究进展[J]. 纺织学报, 2022, 43(05): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!