纺织学报 ›› 2024, Vol. 45 ›› Issue (07): 240-247.doi: 10.13475/j.fzxb.20230103002
SHI Chu1, LI Jun1,2(), WANG Yunyi1,2
摘要:
为尽早发现、及时干预糖尿病患者足部疾病的发展,提高糖尿病足预防性智能产品预测能力的敏感度和特异度,基于文献回顾,对比了不同类型糖尿病患者与健康人群的足底温度特征差异,分析了糖尿病足的温度预测指标的提取和阈值设置,发现单、双侧足部温度及足部应变温度均能用于预防糖尿病足疾病的发生,但以双足对称点的温差2.2 ℃作为糖尿病足疾病预测阈值应用最广。讨论了基于糖尿病足温度监测需求的智能测温鞋袜产品的设计开发,发现智能袜的研发程度比智能鞋更为成熟,不同产品间温度传感器的数量和放置区域存在差异,其中大拇趾底、第1跖骨头、第5跖骨头和足跟这4个区域具有高度一致性。未来研究可针对不同风险程度的糖尿病足进行温度分级,结合压力、湿度等其他指标建立多指标风险预测模型,并综合鞋和袜进行系统性多功能研发。
中图分类号:
[1] | 张会峰, 许樟荣, 冉兴无. 糖尿病足的相关定义和标准[J]. 中华糖尿病杂志, 2020, 12(6): 363-368. |
ZHANG Huifeng, XU Zhangrong, RANG Xingwu. Definition and standards of diabetic foot[J]. Chinese Journal of Diabetes Mellitus, 2020, 12(6): 363-368. | |
[2] | 中华医学会糖尿病学分会,中华医学会感染病学分会, 中华医学会组织修复与再生分会. 中国糖尿病足防治指南(2019版)(Ⅴ)[J]. 中华糖尿病杂志, 2019, 11(6): 92-108. |
Chinese Diabetes Society,Chinese Society of Infectious Diseases, Chinese Society for Tissue Repair and Regeneration. Chinese guideline on prevention and management of diabetic foot (2019 edition)(V)[J]. Chinese Journal of Diabetes Mellitus, 2019, 11(6): 92-108. | |
[3] | 李欣仪, 罗文静, 赵楠, 等. 糖尿病患者合并足部皮肤问题现状及其影响因素[J]. 解放军护理杂志, 2020, 37(10): 5-9. |
LI Xinyi, LUO Wenjing, ZHAO Nan, et al. The status quo and influence factors of foot skin problems among patients with diabetes[J]. Nursing Journal of Chinese People's Liberation Army, 2020, 37(10): 5-9. | |
[4] | 罗颖琪, 李炳辉, 许樟荣, 等. 国际糖尿病足工作组:糖尿病足溃疡预防指南——《国际糖尿病足工作组:糖尿病足防治国际指南(2019)》的一部分[J]. 感染、炎症、修复, 2019, 20(3): 140-157. |
LUO Yingqi, LI Binghui, XU Zhangrong, et al. International working group on the diabetic foot guideline on the prevention of foot ulcers in persons with diabetes: part of the 2019 IWGDF guidelines on the prevention and management of diabetic foot disease[J]. Infection,Inflammation,Repair, 2019, 20(3): 140-157. | |
[5] | 李欣仪, 周秋红, 赵楠, 等. 糖尿病患者足部风险筛查现状及影响因素研究[J]. 护理学杂志, 2021, 36(9): 33-36. |
LI Xinyi, ZHOU Qiuhong, ZHAO Nan, et al. Foot risk screening and its influencing factors among patients with diabetes[J]. Journal of Nursing Science, 2021, 36(9): 33-36. | |
[6] | MONTEIRO-SOARES M, BOYKO E J, RIBEIRO J, et al. Predictive factors for diabetic foot ulceration: a systematic review: predictive factors for diabetic foot ulceration[J]. Diabetes/Metabolism Research and Reviews, 2012, 28(7): 574-600. |
[7] |
HAYASHI A, SHICHIRI M. Use of noncontact infrared skin thermometer for peripheral arterial disease screening in patients with and without diabetes[J]. Angiology, 2020, 71(7): 650-657.
doi: 10.1177/0003319720920162 pmid: 32319312 |
[8] | NETTEN J J, RASPOVIC A, LAVERY L A, et al. Prevention of foot ulcers in the at-risk patient with diabetes: a systematic review[J]. Diabetes/Metabolism Research and Reviews, 2020. DOI:10.1002/dmrr.2701. |
[9] |
HOUGHTON V J, BOWER V M, CHANT D C. Is an increase in skin temperature predictive of neuropathic foot ulceration in people with diabetes? a systematic review and meta-analysis[J]. Journal of Foot and Ankle Research, 2013, 6(1): 31.
doi: 10.1186/1757-1146-6-31 pmid: 23919736 |
[10] | 黄悦, 汪清, 陈丹, 等. 足部皮肤温度与糖尿病足溃疡风险相关性的meta分析[J]. 实用预防医学, 2022, 29(9): 1059-1063. |
HUANG Yue, WANG Qing, CHEN Dan, et al. Meta-analysis on correlation between foot skin temperature and the risk of diabetic foot ulcers[J]. Practical Preventive Medicine, 2022, 29(9): 1059-1063. | |
[11] | MOULAEI K, MALEK M, SHEIKHTAHERI A. A smart wearable device for monitoring and self-management of diabetic foot: a proof of concept study[J]. International Journal of Medical Informatics, 2021. DOI: 10.1016/j.ijmedinf.2020.104343. |
[12] |
NOVICE T, VEMURI C, GILBERT C, et al. Do patients with diabetes mellitus want wearable technology to prevent diabetic foot ulcers?[J]. Journal of Diabetes Science and Technology, 2019, 13(4): 799-800.
doi: 10.1177/1932296819851776 pmid: 31113260 |
[13] |
MACDONALD E M, PERRIN B M, KINGSLEY M I C. Factors influencing Australian podiatrists' behavioural intentions to adopt a smart insole into clinical practice: a mixed methods study[J]. Journal of Foot and Ankle Research, 2020, 13(1): 28.
doi: 10.1186/s13047-020-00396-x pmid: 32487234 |
[14] |
CHAN A W, MACFARLANE I A, BOWSHER D R. Contact thermography of painful diabetic neuropathic foot[J]. Diabetes Care, 1991, 14(10): 918-922.
pmid: 1773693 |
[15] | SUN P C, JAO S H E, CHENG C K. Assessing foot temperature using infrared thermography[J]. Foot & Ankle International, 2005, 26(10): 847-853. |
[16] | ASTASIO-PICADO A, ESCAMILLA MARTÍNEZ E, MARTÍNEZ NOVA A, et al. Thermal map of the diabetic foot using infrared thermography[J]. Infrared Physics & Technology, 2018, 93: 59-62. |
[17] |
BAGAVATHIAPPAN S, PHILIP J, JAYAKUMAR T, et al. Correlation between plantar foot temperature and diabetic neuropathy: a case study by using an infrared thermal imaging technique[J]. Journal of Diabetes Science and Technology, 2010, 4(6): 1386-1392.
doi: 10.1177/193229681000400613 pmid: 21129334 |
[18] |
GATT A, CASSAR K, FALZON O, et al. The identification of higher forefoot temperatures associated with peripheral arterial disease in type 2 diabetes mellitus as detected by thermography[J]. Primary Care Diabetes, 2018, 12(4): 312-318.
doi: S1751-9918(18)30002-0 pmid: 29396205 |
[19] |
YAVUZ M, ERSEN A, HARTOS J, et al. Temperature as a causative factor in diabetic foot ulcers: a call to revisit ulceration pathomechanics[J]. Journal of the American Podiatric Medical Association, 2019, 109(5): 345-350.
doi: 10.7547/17-131 pmid: 30427732 |
[20] | HERNANDEZ-CONTRERAS D A, PEREGRINA-BARRETO H, RANGEL-MAGDALENO J de J, et al. Plantar thermogram database for the study of diabetic foot complications[J]. IEEE Access, 2019, 7: 161296-161307. |
[21] | HERNANDEZ-CONTRERAS D, PEREGRINA-BARRETO H, RANGEL-MAGDALENO J, et al. Narrative review: diabetic foot and infrared thermography[J]. Infrared Physics & Technology, 2016, 78: 105-117. |
[22] |
VAN NETTEN J J, VAN BAAL J G, LIU C, et al. Infrared thermal imaging for automated detection of diabetic foot complications[J]. Journal of Diabetes Science and Technology, 2013, 7(5): 1122-1129.
doi: 10.1177/193229681300700504 pmid: 24124937 |
[23] | VAN NETTEN J J, PRIJS M, VAN BAAL J G, et al. Diagnostic values for skin temperature assessment to detect diabetes-related foot complications[J]. Diabetes Technology & Therapeutics, 2014, 16(11): 714-721. |
[24] | ARMSTRONG D G, HOLTZ-NEIDERER K, WENDEL C, et al. Skin temperature monitoring reduces the risk for diabetic foot ulceration in high-risk patients[J]. The American Journal of Medicine, 2007, 120(12): 1042-1046. |
[25] | WIJLENS A M, HOLLOWAY S, BUS S A, et al. An explorative study on the validity of various definitions of a 2.2 ℃ temperature threshold as warning signal for impending diabetic foot ulceration: Exploring the validity of various definitions of a 2.2 ℃ temperature threshold[J]. International Wound Journal, 2017, 14(6): 1346-1351. |
[26] | MING A, WALTER I, ALHAJJAR A, et al. Study protocol for a randomized controlled trial to test for preventive effects of diabetic foot ulceration by telemedicine that includes sensor-equipped insoles combined with photo documentation[J]. Trials, 2019, 20(1): 521. |
[27] |
FRYKBERG R G, GORDON I L, REYZELMAN A M, et al. Feasibility and efficacy of a smart mat technology to predict development of diabetic plantar ulcers[J]. Diabetes Care, 2017, 40(7): 973-980.
doi: 10.2337/dc16-2294 pmid: 28465454 |
[28] | GATT A, FALZON O, CASSAR K, et al. Establishing differences in thermographic patterns between the various complications in diabetic foot disease[J]. International Journal of Endocrinology, 2018. DOI: 10.1155/2018/ 9808295. |
[29] | LAVERY L A, PETERSEN B J, LINDERS D R, et al. Unilateral remote temperature monitoring to predict future ulceration for the diabetic foot in remission[J]. BMJ Open Diabetes Research and Care, 2019, 7(1): e000696. |
[30] | NIEMANN U, SPILIOPOULOU M, MALANOWSKI J, et al. Plantar temperatures in stance position: a comparative study with healthy volunteers and diabetes patients diagnosed with sensoric neuropathy[J]. EBioMedicine, 2020.DOI: /10.1016/j.ebiom.2020.102712. |
[31] | BEACH C, COOPER G, WEIGHTMAN A, et al. Monitoring of dynamic plantar foot temperatures in diabetes with personalised 3D-printed wearables[J]. Sensors, 2021, 21(5): 1717. |
[32] | REDDY P N, COOPER G, WEIGHTMAN A, et al. Walking cadence affects rate of plantar foot temperature change but not final temperature in younger and older adults[J]. Gait & Posture, 2017, 52: 272-279. |
[33] | REDDY P N, COOPER G, WEIGHTMAN A, et al. An in-shoe temperature measurement system for studying diabetic foot ulceration etiology: preliminary results with healthy participants[J]. Procedia CIRP, 2016, 49: 153-156. |
[34] |
YAVUZ M, BREM R W, DAVIS B L, et al. Temperature as a predictive tool for plantar triaxial loading[J]. Journal of Biomechanics, 2014, 47(15): 3767-3770.
doi: 10.1016/j.jbiomech.2014.09.028 pmid: 25446272 |
[35] | REYZELMAN A M, KOELEWYN K, MURPHY M, et al. Continuous temperature-monitoring socks for home use in patients with diabetes: observational study[J]. Journal of Medical Internet Research, 2018. DOI: 10.2196/12460. |
[36] |
NAJAFI B, MOHSENI H, GREWAL G S, et al. An optical-fiber-based smart textile (smart socks) to manage biomechanical risk factors associated with diabetic foot amputation[J]. Journal of Diabetes Science and Technology, 2017, 11(4): 668-677.
doi: 10.1177/1932296817709022 pmid: 28513212 |
[37] | TORREBLANCA GONZÁLEZ J, GÓMEZ-MARTÍN B, HERNÁNDEZ ENCINAS A, et al. The use of infrared thermography to develop and assess a wearable sock and monitor foot temperature in diabetic subjects[J]. Sensors, 2021, 21(5): 1821. |
[38] | 李肖悦. 基于糖尿病足溃疡的智能监测袜设计与性能分析[D]. 杭州: 浙江理工大学, 2022:42-66. |
LI Xiaoyue. Design and performance analysis of intelligent monitoring socks based on diabetic foot ulcers[D]. Hangzhou: Zhejiang Sci-Tech University, 2022:42-66. | |
[39] | DE PASCALI C, FRANCIOSO L, GIAMPETRUZZI L, et al. Modeling, fabrication and integration of wearable smart sensors in a monitoring platform for diabetic patients[J]. Sensors, 2021, 21(5): 1847. |
[40] | RESCIO G, LEONE A, FRANCIOSO L, et al. Fully integrated smart insole for diabetic foot[C]// LEONE A, CAROPPOA, RESCIOG, et al. Ambient Assisted Living. Cham: Springer International Publishing, 2019: 221-228. |
[41] | MURILLO F L, LEIJA L, VERA A. A foot temperature measuring system for diabetic patients[C]// 2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). Campeche Mexico: IEEE, 2014:1-4. |
[42] | NAJAFI B, REEVES N D, ARMSTRONG D G. Leveraging smart technologies to improve the management of diabetic foot ulcers and extend ulcer‐free days in remission[J]. Diabetes-Metabolism Research and Reviews, 2020.DOI: 10.1002/dmrr.3239. |
[43] | YANO T, OKAMOTO Y, HIRO M, et al. Relationship between skin temperature and skin blood flow in the fingers of healthy adults during cold vasodilation[J]. Journal of the Autonomic Nervous System, 1995, 1(56): 536-541. |
[44] | COATES J, CHIPPERFIELD A, CLOUGH G. Wearable multimodal skin sensing for the diabetic foot[J]. Electronics, 2016, 5(4): 45-58. |
[45] | 谭哲煜, 赵楠, 戴薇薇, 等. 糖尿病足溃疡预防的未来:从分级医疗向个体化医疗的模式转变[J]. 中华糖尿病杂志, 2021, 13(5): 457-461. |
TAN Zheyu, ZHAO Nan, DAI Weiwei, et al. The future of diabetic foot ulcer prevention: the shift from hierarchical medical care to individualized medical care[J]. Chinese Journal of Diabetes, 2021, 13(5): 457-461. | |
[46] | GOLLEDGE J, FERNANDO M, LAZZARINI P, et al. The potential role of sensors, wearables and telehealth in the remote management of diabetes-related foot disease[J]. Sensors, 2020. DOI:10.3390/s20164527. |
[1] | 王楠, 孙辉, 于斌, 许磊, 朱祥祥. 基于熔喷非织造材料的温度传感器制备及其传感性能[J]. 纺织学报, 2024, 45(05): 138-146. |
[2] | 丁小蝶, 唐虹, 高强, 张成蛟. 上躯干皮肤温度冷热变化与热量调节区划分[J]. 纺织学报, 2024, 45(05): 147-154. |
[3] | 柯莹, 林磊, 郑晴, 王宏付. 电加热服加热区域分布对人体热舒适感的影响[J]. 纺织学报, 2024, 45(04): 188-194. |
[4] | 刘欢欢, 孟虎, 王朝晖. 适老化智能可穿戴设计研究进展及发展趋势[J]. 纺织学报, 2024, 45(03): 236-243. |
[5] | 陈露, 石宝, 魏赛男, 贾立霞, 阎若思. 三维一体针织结构超级电容器的储能性能[J]. 纺织学报, 2024, 45(02): 126-133. |
[6] | 程子琪, 卢业虎, 许静娴. 电热织物系统热传递模拟及其参数设计[J]. 纺织学报, 2024, 45(02): 206-213. |
[7] | 贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光, 李时伟. 基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能[J]. 纺织学报, 2023, 44(10): 113-119. |
[8] | 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221. |
[9] | 杜吉辉, 苏云, 刘广菊, 田苗, 李俊. 智能防寒手套温控系统设计及热舒适性研究[J]. 纺织学报, 2023, 44(04): 172-178. |
[10] | 陈莹, 宋泽涛, 郑晓慧, 姜延, 常素芹. 蒸发型降温服的降温性能研究[J]. 纺织学报, 2022, 43(11): 141-147. |
[11] | 刘欢欢, 王朝晖, 叶勤文, 陈子唯, 郑婧瑾. 可穿戴技术在情绪识别中的应用进展及发展趋势[J]. 纺织学报, 2022, 43(08): 197-205. |
[12] | 张昭华, 陈之瑞, 李璐瑶, 肖平, 彭浩然, 张钰涵. 人体局部皮肤的气流敏感性及其影响因素[J]. 纺织学报, 2021, 42(12): 125-130. |
[13] | 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131. |
[14] | 方剑, 任松, 张传雄, 陈钱, 夏广波, 葛灿. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(09): 1-9. |
[15] | 荣凯, 樊威, 王琪, 张聪, 于洋. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(09): 10-16. |
|