纺织学报 ›› 2024, Vol. 45 ›› Issue (07): 47-54.doi: 10.13475/j.fzxb.20230100101

• 纺织工程 • 上一篇    下一篇

凹凸点阵双面织物的结构与湿热管理评价

葛美彤, 董智佳(), 丛洪莲, 丁玉琴   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2023-01-03 修回日期:2023-04-03 出版日期:2024-07-15 发布日期:2024-07-15
  • 通讯作者: 董智佳(1986—),女,副教授,博士。主要研究方向为针织成形织物结构研发。E-mail: dongzj0921@163.com
  • 作者简介:葛美彤(2000—),女,硕士生。主要研究方向为纬编织物结构与功能设计。
  • 基金资助:
    国家自然科学基金项目(61902150);江苏省研究生科研与实践创新计划项目(KYCX24-2557)

Structure and moisture/thermal management evaluation of concave-convex lattice knitted fabrics

GE Meitong, DONG Zhijia(), CONG Honglian, DING Yuqin   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University,Wuxi, Jiangsu 214122, China
  • Received:2023-01-03 Revised:2023-04-03 Published:2024-07-15 Online:2024-07-15

摘要:

为探究凹凸点阵双面针织物连接点数量、结构与分布对织物单向导湿能力的影响,以差动毛细效应为原理,选用了55.5 dtex(24 f)普通涤纶与93.3 dtex(384 f)超细涤纶为原料,设计了4种不同工艺的凹凸点阵双面织物,其中在工艺1和工艺2的成圈连接点处将55.5 dtex(24 f)涤纶替换为33.3 dtex(12 f)涤纶,共得到6款具有湿热管理功能的织物。对织物透湿性、透气率、液态水分管理能力、滴水扩散面积、蒸发速率、保温率等进行测试与分析。结果表明:当双面织物组织结构中的连接点较少且分布均匀时,织物滴水扩散面积变化较大,其单向导湿性能较好;当以连续集圈作为连接点时,圈柱纱段长、纱线堆积会导致织物透湿性、透气性下降;33.3 dtex(12 f)涤纶使织物网眼明显,有利于提高织物的透湿性、透气性及速干性;较薄的织物保温率较低,有利于散热。最后利用灰色关联度分析法对织物进行综合评价,在单位循环下,当织物轻薄且组织以集圈为主要连接点较少时,具有较好的湿热管理能力。

关键词: 单向导湿, 双面针织物, 热湿舒适, 超细纤维涤纶, 灰色关联度分析

Abstract:

Objective At present, light exercise is important for people's health. However, the conventional cooling and heating system has consumed significant amounts of energy to ensure optimal human body temperature during the light exercise. Sweat evaporation is an effective method for heat dissipation to maintain human thermal balance. The conventional textiles such as cotton fabric inevitably retain excessive sweat at the interface due to the intrinsic hydrophilicity, leading to wet and cool feeling. Therefore, fabrics with moisture and heat management capability is expected to transport liquid directionally, maintaining the skin dryness and finally achieving energy conservation and wearing comfort.

Method When a density difference exists on both sides of a single fabric, additional pressure difference will be generated to make water transfer spontaneously, according to the principle of differential capillary effect. Based on this principle, two polyester yarns (55.5 dtex(24 f) and 93.3 dtex(384 f)) were selected. Four concave-convex lattice fabrics were created with variations in structure, number, and distribution of connecting points, denoted as process A, B, C and D. In process A and B, the 55.5 dtex(24 f) polyester yarn was replaced by the 33.3 dtex(12 f) polyester yarn at the connecting coil to form obvious mesh, named as A2 and B4, respectively. In order to explore the influence of different coil structures on the moisture and heat management performance of fabric, 6 different fabrics A1, A2, B3, B4, C5 and D6 with the capability of moisture and heat management were prepared.

Results Fabrics in process A are configured with looping connecting coil and single tuck connecting coil, while process B incorporates three types of connecting coils: looping, single tuck, and double tuck coils. In contrast, process C only utilizes single tuck as the connecting coil, and process D incorporates looping connecting coil. Following the addition of 33.3 dtex(12 f) polyester yarn, fabrics A2 and B4 exhibited a noticeable mesh formation compared to A1 and B3. In order to assess the performance of the fabrics, various tests were conducted, including evaluation of moisture permeability, moisture management, droplet spreading, evaporation rate, and insulation rate. Analysis of the moisture permeability data revealed that fabric A1 outperformed the others. The presence of tuck connecting coils in processes B and C, spanning multiple horizontal rows, led to moisture condensation on the yarn/fiber and subsequent decrease in moisture permeability. Notably, the air permeability was primarily influenced by the fabric structure, with the introduction of 33.3 dtex(12 f) polyester yarn enhancing air permeability due to the formation of mesh. The weight of the fabrics demonstrated a positive correlation with unidirectional moisture transport capability. Thicker fabric D6 facilitated moisture transport, while the liquid easily penetrated soft fabrics. Fabric C5, featuring single tuck connection coil, displayed good unidirectional moisture transport and a large area change of droplet spreading due to the formation of transport channels. The relationship between evaporation and thermal insulation indicated a negative correlation, as faster liquid evaporation led to increased heat dissipation and decreased thermal insulation rate. The fabrics with a high proportion of microfibers, exhibited slow evaporation due to water absorption. Additionally, the mesh structure, provided improved evaporation efficiency. Overall, the connecting coils and fabric structure coordinately influenced the performance of fabric. As demonstrated by the correlation degree rankings, the comprehensive evaluation of the designed fabrics through grey relational analysis revealed that the tuck connection points in the process structure significantly influenced the fabric's heat and humidity management capabilities.

Conclusion Overall, the experiments show that the inner side of garment woven with 55.5 dtex(24 f) polyester yarn and the outer side knitted with 93.3 dtex(384 f) microfiber polyester achieved excellent unidirectional water transfer ab ability. It has been identified that the materials and structure jointly affected the comprehensive performance. The involvement of hydrophilic microfibre was found to reduce the moisture permeability and water evaporation rate. The connection coil of tuck was beneficial to unidirectional moisture transport but adverse to permeability. To the contrary, the structure of mesh was conducive to air permeability but poor in unidirectional water transport capability. In the final comprehensive evaluation, it demonstrated that single performance can not determine the overall moisture and heat management ability of the fabrics. The six fabrics used in this research are easy to produce without physical and chemical modification, which provides theoretical and experimental basis for the development of light sportswear fabrics with good moisture and heat management ability, environmental protection and durability.

Key words: one-way water transport, double jersey, thermal and moisture comfort, polyester microfiber, grey relational analysis

中图分类号: 

  • TS186.1

图1

织物设计原理"

图2

织物正反面及凹凸点阵结构示意图"

图3

织物结构正侧面示意图"

图4

织物连接点分布"

表1

织物结构占比"

工艺
编号
双面无连接
(结构1)
成圈连接点
(结构2)
单集圈连接点
(结构3)
双集圈连接点
(结构4)
工艺1 87.50 6.25 6.25 0
工艺2 87.52 4.16 4.16 4.16
工艺3 93.75 0 6.25 0
工艺4 91.67 8.33 0 0

表2

织物基本参数"

工艺 试样
编号
厚度/
mm
面密度/
(g·m-2)
纱线比例/%
坯布 成品 Y1 Y2 Y3
工艺1 A1 0.652 86 117 45.95 54.05 0
A2 0.558 78 102 23.10 61.50 15.4
工艺2 B3 0.580 90 116 43.75 56.25 0
B4 0.570 81 113 30.30 60.10 9.6
工艺3 C5 0.564 94 118 39.20 60.80 0
工艺4 D6 0.788 132 190 45.60 54.40 0

图5

织物透湿性"

图6

织物透气性"

图7

织物单向导湿传递指数与面密度"

表3

织物滴水扩散面积"

试样
编号
不同时间下深色区域面积/cm2
5 s 25 s 45 s
A2 4.40 4.43 4.31
C5 5.19 4.99 4.30
D6 3.25 3.00 2.87

图8

织物蒸发速率与保温率"

表4

无量纲化后的新数据"

类别 k=1 k=2 k=3 k=4 k=5
X'0 1.000 1.000 1.000 1.000 1.000
X'1 0.446 1.000 0.941 0.688 0.846
X'2 0.376 0.886 1.000 0.667 0.829
X'3 0.435 0.828 0.757 0.943 0.924
X'4 0.445 0.905 0.867 0.764 0.809
X'5 0.635 0.906 0.875 1.000 1.000
X'6 1.000 0.798 0.304 0.453 0.832

表5

等权关联度与加权关联度"

试样
编号
等权
关联度
等权关联度
秩位
加权
关联度
加权关联度
秩位
A1 0.692 2 0.653 3
A2 0.660 4 0.624 5
B3 0.664 3 0.661 2
B4 0.627 5 0.603 6
C5 0.802 1 0.800 1
D6 0.606 6 0.641 4
[1] 郝习波, 李辉芹, 巩继贤, 等. 单向导湿功能纺织品的研究进展[J]. 纺织学报, 2015, 36(7):157-161,168.
HAO Xibo, LI Huiqin, GONG Jixian, et al. Review on unidirectional water transport functional fabrics[J]. Journal of Textile Research, 2015, 36(7):157-161,168.
[2] MIAO D Y, WANG X F, YU J Y, et al. A biomimetic transpiration textile for highly efficient personal drying and cooling[J]. Advanced Functional Materials, 2021.DOI:10.1002/adfm.202008705.
[3] 王雪, 李娜娜, 徐密, 等. 导湿凉感织物结构设计与性能测试[J]. 针织工业, 2021(1):16-20.
WANG Xue, LI Nana, XU Mi, et al. Structural design and performance analysis of moisture transfer cool fabric[J]. Knitting Industries, 2021(1):16-20.
[4] LI X, JAVED M, GUO Y, et al. Superabsorbent fabric based on weft back weave structure for efficient evaporative cooling[J]. Adv Mater Inter, 2021. DOI:10.1002/admi.202001329.
[5] 侯秋平, 顾肇文, 王其. 灯芯点结构导湿快干针织物的设计[J]. 上海纺织科技, 2006, 34(7):54-55.
HOU Qiuping, GU Zhaowen, WANG Qi. Design of lampwick structure knitted fabric of good wet permeability and fast dry[J]. Shanghai Textile Science & Technology, 2006, 34(7):54-55.
[6] 钱娟, 谢婷, 张佩华, 等. 聚乙烯针织物的热湿舒适性能[J]. 纺织学报, 2022, 43(7):60-66.
QIAN Juan, XIE Ting, ZHANG Peihua, et al. Thermal and moisture comfort performance of polyethylene knitted fabric[J]. Journal of Textile Research, 2022, 43(7):60-66.
[7] 范菲, 齐宏进. 织物孔径特性与织物结构及芯吸性能的关系[J]. 纺织学报, 2007, 28(7):38-41.
FAN Fei, QI Hongjin. Relationship between capillary properties and configurations and wicking capability of fabric[J]. Journal of Textile Research, 2007, 28(7):38-41.
[8] 姚穆, 施楣梧, 蒋素婵. 织物湿传导理论与实际的研究第一报:织物的湿传导过程与结构的研究[J]. 西北纺织工学院学报, 2001, 15(2):1-8.
YAO Mu, SHI Meiwu, JIANG Suchan. The research on the theory and practice of wet permeability of fabrics (Ⅰ): research on the wet permeability process and fabric structure[J]. Journal of Northwest Textile Institute of Technology, 2001, 15(2):1-8.
[9] 张清山. 关于织物透气性与透湿性测试的几点启发[J]. 中国纤检, 2013(8):81-83.
ZHANG Qingshan. Some enlightenment from the tests of air permeability and moisture permeability for fabrics[J]. China Fiber Inspection, 2013(8):81-83.
[10] 潘菊芳, 廉志军, 井连英, 等. 纤维组合及组织结构对织物吸湿速干性能影响[J]. 棉纺织技术, 2004, 32(11):5-8.
PAN Jufang, LIAN Zhijun, JING Lianying, et al. Influence of fibre combination & stitch structure on fabric moisture absorbent & quick drying property[J]. Cotton Textile Technology, 2004, 32(11):5-8.
[11] 张辉, 徐军, 张建春, 等. 织物静态热湿舒适性测试分析[J]. 纺织学报, 2004, 25(4):56-58.
ZHANG Hui, XU Jun, ZHANG Jianchun, et al. Test & analyze the heat-moisture comfortable property of fabric[J]. Journal of Textile Research, 2004, 25(4):56-58.
[12] 李慧, 宋晓霞. 吸湿排汗针织面料设计及热湿舒适性评价[J]. 服装学报, 2022, 7(3):196-201,208.
LI Hui, SONG Xiaoxia. Design of moisture-wicking fabric and thermal and moisture comfort evaluation[J]. Journal of Apparel Research, 2022, 7(3):196-201,208.
[1] 方雪明, 董智佳, 丛洪莲, 丁玉琴. 单面纬编织物变化孔隙率结构设计与透气导湿性能评价[J]. 纺织学报, 2024, 45(05): 51-59.
[2] 王兆芳, 张辉, 丁波, 张淼. 文胸罩杯透湿率测定新方法[J]. 纺织学报, 2024, 45(01): 176-184.
[3] 姚晨曦, 万爱兰. 聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯纬编运动T恤面料的热湿舒适性[J]. 纺织学报, 2024, 45(01): 90-98.
[4] 王兆芳, 丁波, 张辉, 陈思璘. 青年女性胸部出汗分布和出汗率的测定[J]. 纺织学报, 2023, 44(12): 145-152.
[5] 丁玉琴, 董智佳, 丛洪莲, 葛美彤. 单向导湿纬编成形织物的结构设计及其性能[J]. 纺织学报, 2023, 44(11): 83-89.
[6] 王予涛, 丛洪莲, 顾洪阳. 纬编成形护膝结构设计及其热湿舒适性[J]. 纺织学报, 2023, 44(10): 68-74.
[7] 赵辰, 王敏, 李俊. 个体降温服优化设计对其降温效果影响的研究进展[J]. 纺织学报, 2023, 44(09): 243-250.
[8] 丁雪婷, 王建萍, 潘婷, 姚晓凤, 袁鲁宁. 仿蜻蜓翅膀结构的冬季针织面料研发及其性能[J]. 纺织学报, 2023, 44(09): 75-83.
[9] 尹昂, 丛洪莲. 经编单向导湿织物设计与结构优化[J]. 纺织学报, 2023, 44(04): 86-91.
[10] 陈佳慧, 梅涛, 赵青华, 尤海宁, 王雯雯, 王栋. 热湿舒适性智能织物的研究进展[J]. 纺织学报, 2023, 44(01): 30-37.
[11] 王洪杰, 胡忠文, 王赫, 凤权, 林童. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202.
[12] 钱娟, 谢婷, 张佩华, 付少举. 聚乙烯针织物的热湿舒适性能[J]. 纺织学报, 2022, 43(07): 60-66.
[13] 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56.
[14] 张青松, 张迎晨, 邱振中, 吴红艳, 张志茹, 张夏楠. 凉感面料开发及其吸湿凉感机制研究[J]. 纺织学报, 2022, 43(02): 132-139.
[15] 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!